File: jac_lu_det.cpp

package info (click to toggle)
cppad 2026.00.00.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,584 kB
  • sloc: cpp: 112,960; sh: 6,146; ansic: 179; python: 71; sed: 12; makefile: 10
file content (83 lines) | stat: -rw-r--r-- 2,131 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------

/*
{xrst_begin jac_lu_det.cpp}

Gradient of Determinant Using Lu Factorization: Example and Test
################################################################

{xrst_literal
   // BEGIN C++
   // END C++
}

{xrst_end jac_lu_det.cpp}
*/
// BEGIN C++
// Complex examples should suppress conversion warnings
# include <cppad/wno_conversion.hpp>

# include <cppad/cppad.hpp>
# include <cppad/speed/det_by_lu.hpp>

// The AD complex case is used by this example so must
// define a specializatgion of LeqZero,AbsGeq for the AD<Complex> case
namespace CppAD {
   CPPAD_BOOL_BINARY( std::complex<double> ,  AbsGeq   )
   CPPAD_BOOL_UNARY(  std::complex<double> ,  LeqZero )
}

bool JacLuDet(void)
{  bool ok = true;
   using namespace CppAD;
   double eps99 = 99.0 * std::numeric_limits<double>::epsilon();

   typedef std::complex<double> Complex;
   typedef AD<Complex>          ADComplex;

   size_t n = 2;

   // object for computing determinants
   det_by_lu<ADComplex> Det(n);

   // independent and dependent variable vectors
   CPPAD_TESTVECTOR(ADComplex)  X(n * n);
   CPPAD_TESTVECTOR(ADComplex)  D(1);

   // value of the independent variable
   size_t i;
   for(i = 0; i < n * n; i++)
      X[i] = Complex( double(i), -double(i) );

   // set the independent variables
   Independent(X);

   // compute the determinant
   D[0]  = Det(X);

   // create the function object
   ADFun<Complex> f(X, D);

   // argument value
   CPPAD_TESTVECTOR(Complex)     x( n * n );
   for(i = 0; i < n * n; i++)
      x[i] = Complex( double(2 * i) , double(i) );

   // first derivative of the determinant
   CPPAD_TESTVECTOR(Complex) J( n * n );
   J = f.Jacobian(x);

   /*
   f(x)     = x[0] * x[3] - x[1] * x[2]
   */
   Complex Jtrue[]  = { x[3], -x[2], -x[1], x[0] };
   for( i = 0; i < n*n; i++)
      ok &= NearEqual( Jtrue[i], J[i], eps99 , eps99 );

   return ok;
}

// END C++