1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin opt_val_hes.cpp app}
opt_val_hes: Example and Test
#############################
Fix :math:`z \in \B{R}^\ell` and define the functions
:math:`S_k : \B{R} \times \B{R} \rightarrow \B{R}^\ell` by and
:math:`F : \B{R} \times \B{R} \rightarrow \B{R}` by
.. math::
:nowrap:
\begin{eqnarray}
S_k (x, y) & = & \frac{1}{2} [ y * \sin ( x * t_k ) - z_k ]^2
\\
F(x, y) & = & \sum_{k=0}^{\ell-1} S_k (x, y)
\end{eqnarray}
It follows that
.. math::
:nowrap:
\begin{eqnarray}
\partial_y F(x, y)
& = &
\sum_{k=0}^{\ell-1} [ y * \sin ( x * t_k ) - z_k ] \sin( x * t_k )
\\
\partial_y \partial_y F(x, y)
& = &
\sum_{k=0}^{\ell-1} \sin ( x t_k )^2
\end{eqnarray}
Furthermore if we define :math:`Y(x)`
as solving the equation :math:`\partial F[ x, Y(x) ] = 0` we have
.. math::
:nowrap:
\begin{eqnarray}
0 & = &
\sum_{k=0}^{\ell-1} [ Y(x) * \sin ( x * t_k ) - z_k ] \sin( x * t_k )
\\
Y(x) \sum_{k=0}^{\ell-1} \sin ( x * t_k )^2
- \sum_{k=0}^{\ell-1} \sin ( x * t_k ) z_k
\\
Y(x) & = & \frac{
\sum_{k=0}^{\ell-1} \sin( x * t_k ) z_k
}{
\sum_{k=0}^{\ell-1} \sin ( x * t_k )^2
}
\end{eqnarray}
{xrst_literal
// BEGIN C++
// END C++
}
{xrst_end opt_val_hes.cpp}
*/
// BEGIN C++
# include <limits>
# include <cppad/cppad.hpp>
namespace {
using CppAD::AD;
typedef CPPAD_TESTVECTOR(double) BaseVector;
typedef CPPAD_TESTVECTOR(AD<double>) ADVector;
class Fun {
private:
const BaseVector t_; // measurement times
const BaseVector z_; // measurement values
public:
typedef ADVector ad_vector;
// constructor
Fun(const BaseVector &t, const BaseVector &z)
: t_(t) , z_(z)
{ assert( t.size() == z.size() ); }
// ell
size_t ell(void) const
{ return t_.size(); }
// Fun.s
AD<double> s(size_t k, const ad_vector& x, const ad_vector& y) const
{
AD<double> residual = y[0] * sin( x[0] * t_[k] ) - z_[k];
AD<double> s_k = .5 * residual * residual;
return s_k;
}
// Fun.sy
ad_vector sy(size_t k, const ad_vector& x, const ad_vector& y) const
{ assert( y.size() == 1);
ad_vector sy_k(1);
AD<double> residual = y[0] * sin( x[0] * t_[k] ) - z_[k];
sy_k[0] = residual * sin( x[0] * t_[k] );
return sy_k;
}
};
// Used to test calculation of Hessian of V
AD<double> V(const ADVector& x, const BaseVector& t, const BaseVector& z)
{ // compute Y(x)
AD<double> numerator = 0.;
AD<double> denominator = 0.;
size_t k;
for(k = 0; k < size_t(t.size()); k++)
{ numerator += sin( x[0] * t[k] ) * z[k];
denominator += sin( x[0] * t[k] ) * sin( x[0] * t[k] );
}
AD<double> y = numerator / denominator;
// V(x) = F[x, Y(x)]
AD<double> sum = 0;
for(k = 0; k < size_t(t.size()); k++)
{ AD<double> residual = y * sin( x[0] * t[k] ) - z[k];
sum += .5 * residual * residual;
}
return sum;
}
}
bool opt_val_hes(void)
{ bool ok = true;
using CppAD::AD;
using CppAD::NearEqual;
// temporary indices
size_t j, k;
// x space vector
size_t n = 1;
BaseVector x(n);
x[0] = 2. * 3.141592653;
// y space vector
size_t m = 1;
BaseVector y(m);
y[0] = 1.;
// t and z vectors
size_t ell = 10;
BaseVector t(ell);
BaseVector z(ell);
for(k = 0; k < ell; k++)
{ t[k] = double(k) / double(ell); // time of measurement
z[k] = y[0] * sin( x[0] * t[k] ); // data without noise
}
// construct the function object
Fun fun(t, z);
// evaluate the Jacobian and Hessian
BaseVector jac(n), hes(n * n);
# ifndef NDEBUG
int signdet =
# endif
CppAD::opt_val_hes(x, y, fun, jac, hes);
// we know that F_yy is positive definite for this case
assert( signdet == 1 );
// create ADFun object g corresponding to V(x)
ADVector a_x(n), a_v(1);
for(j = 0; j < n; j++)
a_x[j] = x[j];
Independent(a_x);
a_v[0] = V(a_x, t, z);
CppAD::ADFun<double> g(a_x, a_v);
// accuracy for checks
double eps = 10. * CppAD::numeric_limits<double>::epsilon();
// check Jacobian
BaseVector check_jac = g.Jacobian(x);
for(j = 0; j < n; j++)
ok &= NearEqual(jac[j], check_jac[j], eps, eps);
// check Hessian
BaseVector check_hes = g.Hessian(x, 0);
for(j = 0; j < n*n; j++)
ok &= NearEqual(hes[j], check_hes[j], eps, eps);
return ok;
}
// END C++
|