File: ode_inverse.cpp

package info (click to toggle)
cppad 2026.00.00.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,584 kB
  • sloc: cpp: 112,960; sh: 6,146; ansic: 179; python: 71; sed: 12; makefile: 10
file content (356 lines) | stat: -rw-r--r-- 10,173 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-24 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin ipopt_solve_ode_inverse.cpp}
{xrst_spell
   nz
}

ODE Inverse Problem Definitions: Source Code
############################################

Purpose
*******
This example demonstrates how to invert for parameters
in a ODE where the solution of the ODE is numerically approximated.

Forward Problem
***************
We consider the following ordinary differential equation:

.. math::
   :nowrap:

   \begin{eqnarray}
      \partial_t y_0 ( t , a ) & = & - a_1 * y_0 (t, a )
      \\
      \partial_t y_1 (t , a )  & = & + a_1 * y_0 (t, a ) - a_2 * y_1 (t, a )
   \end{eqnarray}

with the initial conditions

.. math::

   y_0 (0 , a) = ( a_0 , 0 )^\R{T}

Our forward problem is stated as follows:
Given :math:`a \in \B{R}^3`
determine the value of :math:`y ( t , a )`,
for :math:`t \in R`, that solves the initial value problem above.

Measurements
************
Suppose we are also given measurement times :math:`s \in \B{R}^5`
and  a measurement vector :math:`z \in \B{R}^4`
and for :math:`i = 0, \ldots, 3`, we model :math:`z_i` by

.. math::

   z_i = y_1 ( s_{i+1} , a) + e_i

where :math:`e_{i-1} \sim {\bf N} (0 , \sigma^2 )`
is the measurement noise,
and :math:`\sigma > 0` is the standard deviation of the noise.

Simulation Analytic Solution
============================
The following analytic solution to the forward problem is used
to simulate a data set:

.. math::
   :nowrap:

   \begin{eqnarray}
      y_0 (t , a) & = & a_0 * \exp( - a_1 * t )
      \\
      y_1 (t , a) & = &
      a_0 * a_1 * \frac{\exp( - a_2 * t ) - \exp( -a_1 * t )}{ a_1 - a_2 }
   \end{eqnarray}

Simulation Parameter Values
===========================

.. list-table::
   :widths: auto

   * - :math:`\bar{a}_0 = 1`
     - initial value of :math:`y_0 (t, a)`
   * - :math:`\bar{a}_1 = 2`
     - transfer rate from compartment zero to compartment one
   * - :math:`\bar{a}_2 = 1`
     - transfer rate from compartment one to outside world
   * - :math:`\sigma = 0`
     - standard deviation of measurement noise
   * - :math:`e_i = 0`
     - simulated measurement noise, :math:`i = 1 , \ldots , Nz`
   * - :math:`s_i = i * .5`
     - time corresponding to the *i*-th measurement,
       :math:`i = 0 , \ldots , 3`

Simulated Measurement Values
============================
The simulated measurement values are given by the equation

.. math::
   :nowrap:

   \begin{eqnarray}
   z_i
   & = &  e_i + y_1 ( s_{i+1} , \bar{a} )
   \\
   & = &
   \bar{a}_0 * \bar{a}_1 *
      \frac{\exp( - \bar{a}_2 * s_i ) - \exp( -\bar{a}_1 * s_i )}
         { \bar{a}_1 - \bar{a}_2 }
   \end{eqnarray}

for :math:`i = 0, \ldots , 3`.

Inverse Problem
***************
The maximum likelihood estimate for :math:`a` given :math:`z`
solves the following optimization problem

.. math::
   :nowrap:

   \begin{eqnarray}
   {\rm minimize} \;
      & \sum_{i=0}^3 ( z_i - y_1 ( s_{i+1} , a ) )^2
      & \;{\rm w.r.t} \; a \in \B{R}^3
   \end{eqnarray}

Trapezoidal Approximation
*************************
We are given a number of approximation points per measurement interval
:math:`np` and define the time grid :math:`t \in \B{R}^{4 \cdot np + 1}`
as follows:
:math:`t_0 = s_0` and
for :math:`i = 0 , 1 , 2, 3`, :math:`j = 1 , \ldots , np`

.. math::

   t_{i \cdot np + j} = s_i + (s_{i+1} - s{i}) \frac{i}{np}

We note that for :math:`i = 1 , \ldots , 4`,
:math:`t_{i \cdot np} = s_i`.
This example uses a trapezoidal approximation to solve the ODE.
Given :math:`a \in \B{R}^3` and :math:`y^{k-1} \approx y( t_{k-1} , a )`,
the a trapezoidal method approximates :math:`y ( t_j , a )`
by the value :math:`y^k \in \B{R}^2` ) that solves the equation

.. math::

   y^k  =  y^{k-1} + \frac{G( y^k , a ) + G( y^{k-1} , a ) }{2} * (t_k - t_{k-1})

where :math:`G : \B{R}^2 \times \B{R}^3 \rightarrow \B{R}^2` is defined by

.. math::
   :nowrap:

   \begin{eqnarray}
      G_0 ( y , a ) & = & - a_1 * y_0
      \\
      G_1 ( y , a ) & = & + a_1 * y_0  - a_2 * y_1
   \end{eqnarray}

Solution Method
***************
We use constraints to embed the
forward problem in the inverse problem.
To be specific, we solve the optimization problem

.. math::
   :nowrap:

   \begin{eqnarray}
   {\rm minimize}
   & \sum_{i=0}^3 ( z_i - y_1^{(i+1) \cdot np} )^2
   & \; {\rm w.r.t} \; a \in \B{R}^3
      \; y^0 \in \B{R}^2 , \ldots , y^{3 \cdot np -1} \in \B{R}^2
   \\
   {\rm subject \; to}
      0 = y^0 - ( a_0 , 0 )^\R{T}
      \\
      & 0 = y^k  -  y^{k-1} -
      \frac{G( y^k , a ) + G( y^{k-1} , a ) }{2}  (t_k - t_{k-1})
      & \; {\rm for} \; k = 1 , \ldots , 4 \cdot np
   \end{eqnarray}

The code below we using the notation
:math:`x \in \B{3 + (4 \cdot np + 1) \cdot 2}` defined by

.. math::

   x = \left(
      a_0, a_1, a_2 ,
      y_0^0, y_1^0,
      \ldots ,
      y_0^{4 \cdot np}, y_1^{4 \cdots np}
   \right)

Source
******
The following source code
implements the ODE inversion method proposed above:
{xrst_literal
   // BEGIN C++
   // END C++
}

{xrst_end ipopt_solve_ode_inverse.cpp}
------------------------------------------------------------------------------
*/
// BEGIN C++
# include <cppad/ipopt/solve.hpp>

namespace {
   using CppAD::AD;

   // value of a during simulation a[0], a[1], a[2]
   double a_[] =                   {2.0,  1.0, 0.5};
   // number of components in a
   size_t na_ = sizeof(a_) / sizeof(a_[0]);

   // function used to simulate data
   double yone(double t)
   {  return
         a_[0]*a_[1] * (exp(-a_[2]*t) - exp(-a_[1]*t)) / (a_[1] - a_[2]);
   }

   // time points were we have data (no data at first point)
   double s_[] = {0.0,   0.5,        1.0,          1.5,         2.0 };

   // Simulated data for case with no noise (first point is not used)
   double z_[] = {yone(s_[1]), yone(s_[2]), yone(s_[3]), yone(s_[4])};
   size_t nz_  = sizeof(z_) / sizeof(z_[0]);

   // number of trapozoidal approximation points per measurement interval
   size_t np_  = 40;


   class FG_eval
   {
   private:
   public:
      // derived class part of constructor
      typedef CPPAD_TESTVECTOR( AD<double> ) ADvector;

      // Evaluation of the objective f(x), and constraints g(x)
      void operator()(ADvector& fg, const ADvector& x)
      {  CPPAD_TESTVECTOR( AD<double> ) a(na_);
         size_t i, j, k;

         // extract the vector a
         for(i = 0; i < na_; i++)
            a[i] = x[i];

         // compute the object f(x)
         fg[0] = 0.0;
         for(i = 0; i < nz_; i++)
         {  k = (i + 1) * np_;
            AD<double> y_1 = x[na_ + 2 * k + 1];
            AD<double> dif = z_[i] - y_1;
            fg[0]         += dif * dif;
         }

         // constraint corresponding to initial value y(0, a)
         // Note that this constraint is invariant with size of dt
         fg[1] = x[na_+0] - a[0];
         fg[2] = x[na_+1] - 0.0;

         // constraints corresponding to trapozoidal approximation
         for(i = 0; i < nz_; i++)
         {  // spacing between grid point
            double dt = (s_[i+1] - s_[i]) / static_cast<double>(np_);
            for(j = 1; j <= np_; j++)
            {  k = i * np_ + j;
               // compute derivative at y^k
               AD<double> y_0  = x[na_ + 2 * k + 0];
               AD<double> y_1  = x[na_ + 2 * k + 1];
               AD<double> G_0  = - a[1] * y_0;
               AD<double> G_1  = + a[1] * y_0 - a[2] * y_1;

               // compute derivative at y^{k-1}
               AD<double> ym_0  = x[na_ + 2 * (k-1) + 0];
               AD<double> ym_1  = x[na_ + 2 * (k-1) + 1];
               AD<double> Gm_0  = - a[1] * ym_0;
               AD<double> Gm_1  = + a[1] * ym_0 - a[2] * ym_1;

               // constraint should be zero
               fg[1 + 2*k ] = y_0  - ym_0 - dt*(G_0 + Gm_0)/2.;
               fg[2 + 2*k ] = y_1  - ym_1 - dt*(G_1 + Gm_1)/2.;

               // scale g(x) so it has similar size as f(x)
               fg[1 + 2*k ] /= dt;
               fg[2 + 2*k ] /= dt;
            }
         }
      }
   };
}
bool ode_inverse(void)
{  bool ok = true;
   size_t i;
   typedef CPPAD_TESTVECTOR( double ) Dvector;

   // number of components in the function g
   size_t ng = (np_ * nz_ + 1) * 2;
   // number of independent variables
   size_t nx = na_ + ng;
   // initial value for the variables we are optimizing w.r.t
   Dvector xi(nx), xl(nx), xu(nx);
   for(i = 0; i < nx; i++)
   {  xi[i] =   0.0; // initial value
      xl[i] = -1e19; // no lower limit
      xu[i] = +1e19; // no upper limit
   }
   for(i = 0; i < na_; i++)
      xi[0] = 1.5;   // initial value for a

   // all the difference equations are constrained to be zero
   Dvector gl(ng), gu(ng);
   for(i = 0; i < ng; i++)
   {  gl[i] = 0.0;
      gu[i] = 0.0;
   }
   // object defining both f(x) and g(x)
   FG_eval fg_eval;

   // options
   std::string options;
   // Use sparse matrices for calculation of Jacobians and Hessians
   // with forward mode for Jacobian (seems to be faster for this case).
   options += "Sparse  true        forward\n";
   // turn off any printing
   options += "Integer print_level 0\n";
   options += "String  sb        yes\n";
   // maximum number of iterations
   options += "Integer max_iter    30\n";
   // approximate accuracy in first order necessary conditions;
   // see Mathematical Programming, Volume 106, Number 1,
   // Pages 25-57, Equation (6)
   options += "Numeric tol         1e-6\n";

   // place to return solution
   CppAD::ipopt::solve_result<Dvector> solution;

   // solve the problem
   CppAD::ipopt::solve<Dvector, FG_eval>(
      options, xi, xl, xu, gl, gu, fg_eval, solution
   );
   //
   // Check some of the solution values
   //
   ok &= solution.status == CppAD::ipopt::solve_result<Dvector>::success;
   //
   double rel_tol    = 1e-4;  // relative tolerance
   double abs_tol    = 1e-4;  // absolute tolerance
   for(i = 0; i < na_; i++)
      ok &= CppAD::NearEqual( a_[i],  solution.x[i],   rel_tol, abs_tol);

   return ok;
}
// END C++