1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-24 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin ipopt_solve_retape.cpp}
{xrst_spell
retaping
}
Nonlinear Programming Retaping: Example and Test
################################################
Purpose
*******
This example program demonstrates a case were the ``ipopt::solve``
argument :ref:`ipopt_solve@options@Retape` should be true.
{xrst_literal
// BEGIN C++
// END C++
}
{xrst_end ipopt_solve_retape.cpp}
*/
// BEGIN C++
# include <cppad/ipopt/solve.hpp>
namespace {
using CppAD::AD;
class FG_eval {
public:
typedef CPPAD_TESTVECTOR( AD<double> ) ADvector;
void operator()(ADvector& fg, const ADvector& x)
{ assert( fg.size() == 1 );
assert( x.size() == 1 );
// compute the Huber function using a conditional
// statement that depends on the value of x.
double eps = 0.1;
if( fabs(x[0]) <= eps )
fg[0] = x[0] * x[0] / (2.0 * eps);
else
fg[0] = fabs(x[0]) - eps / 2.0;
return;
}
};
}
bool retape(void)
{ bool ok = true;
typedef CPPAD_TESTVECTOR( double ) Dvector;
// number of independent variables (domain dimension for f and g)
size_t nx = 1;
// number of constraints (range dimension for g)
size_t ng = 0;
// initial value, lower and upper limits, for the independent variables
Dvector xi(nx), xl(nx), xu(nx);
xi[0] = 2.0;
xl[0] = -1e+19;
xu[0] = +1e+19;
// lower and upper limits for g
Dvector gl(ng), gu(ng);
// object that computes objective and constraints
FG_eval fg_eval;
// options
std::string options;
// retape operation sequence for each new x
options += "Retape true\n";
// turn off any printing
options += "Integer print_level 0\n";
options += "String sb yes\n";
// maximum number of iterations
options += "Integer max_iter 10\n";
// approximate accuracy in first order necessary conditions;
// see Mathematical Programming, Volume 106, Number 1,
// Pages 25-57, Equation (6)
options += "Numeric tol 1e-9\n";
// derivative testing
options += "String derivative_test second-order\n";
// maximum amount of random perturbation; e.g.,
// when evaluation finite diff
options += "Numeric point_perturbation_radius 0.\n";
// place to return solution
CppAD::ipopt::solve_result<Dvector> solution;
// solve the problem
CppAD::ipopt::solve<Dvector, FG_eval>(
options, xi, xl, xu, gl, gu, fg_eval, solution
);
//
// Check some of the solution values
//
ok &= solution.status == CppAD::ipopt::solve_result<Dvector>::success;
double rel_tol = 1e-6; // relative tolerance
double abs_tol = 1e-6; // absolute tolerance
ok &= CppAD::NearEqual( solution.x[0], 0.0, rel_tol, abs_tol);
return ok;
}
// END C++
|