1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin optimize_print_for.cpp}
Optimize Print Forward Operators: Example and Test
##################################################
{xrst_literal
// BEGIN C++
// END C++
}
{xrst_end optimize_print_for.cpp}
*/
// BEGIN C++
# include <cppad/cppad.hpp>
namespace {
struct tape_size { size_t n_var; size_t n_op; };
void PrintFor(
double pos, const char* before, double var, const char* after
)
{ if( pos <= 0.0 )
std::cout << before << var << after;
return;
}
template <class Vector> void fun(
const std::string& options ,
const Vector& x, Vector& y, tape_size& before, tape_size& after
)
{ typedef typename Vector::value_type scalar;
// phantom variable with index 0 and independent variables
// begin operator, independent variable operators and end operator
before.n_var = 1 + x.size(); before.n_op = 2 + x.size();
after.n_var = 1 + x.size(); after.n_op = 2 + x.size();
// Argument to PrintFor is only needed
// if we are keeping print forward operators
scalar minus_one = x[0] - 1.0;
before.n_var += 1; before.n_op += 1;
if( options.find("no_print_for_op") == std::string::npos )
{ after.n_var += 1; after.n_op += 1;
}
// print argument to log function minus one, if it is <= 0
PrintFor(minus_one, "minus_one == ", minus_one , " is <= 0\n");
before.n_var += 0; before.n_op += 1;
if( options.find("no_print_for_op") == std::string::npos )
{ after.n_var += 0; after.n_op += 1;
}
// now compute log
y[0] = log( x[0] );
before.n_var += 1; before.n_op += 1;
after.n_var += 1; after.n_op += 1;
}
}
bool print_for(void)
{ bool ok = true;
using CppAD::AD;
using CppAD::NearEqual;
double eps10 = 10.0 * std::numeric_limits<double>::epsilon();
// domain space vector
size_t n = 1;
CPPAD_TESTVECTOR(AD<double>) ax(n);
ax[0] = 1.5;
// range space vector
size_t m = 1;
CPPAD_TESTVECTOR(AD<double>) ay(m);
for(size_t k = 0; k < 2; k++)
{ // optimization options
std::string options = "";
if( k == 0 )
options = "no_print_for_op";
// declare independent variables and start tape recording
CppAD::Independent(ax);
// compute function value
tape_size before, after;
fun(options, ax, ay, before, after);
// create f: x -> y and stop tape recording
CppAD::ADFun<double> f(ax, ay);
ok &= f.size_order() == 1; // this constructor does 0 order forward
ok &= f.size_var() == before.n_var;
ok &= f.size_op() == before.n_op;
// Optimize the operation sequence
f.optimize(options);
ok &= f.size_order() == 0; // 0 order forward not present
ok &= f.size_var() == after.n_var;
ok &= f.size_op() == after.n_op;
// Check result for a zero order calculation for a different x
CPPAD_TESTVECTOR(double) x(n), y(m), check(m);
x[0] = 2.75;
y = f.Forward(0, x);
fun(options, x, check, before, after);
ok &= NearEqual(y[0], check[0], eps10, eps10);
}
return ok;
}
// END C++
|