File: subgraph_sparsity.cpp

package info (click to toggle)
cppad 2026.00.00.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,584 kB
  • sloc: cpp: 112,960; sh: 6,146; ansic: 179; python: 71; sed: 12; makefile: 10
file content (96 lines) | stat: -rw-r--r-- 3,022 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------

/*
{xrst_begin subgraph_sparsity.cpp}

Subgraph Dependency Sparsity Patterns: Example and Test
#######################################################

{xrst_literal
   // BEGIN C++
   // END C++
}

{xrst_end subgraph_sparsity.cpp}
*/
// BEGIN C++
# include <cppad/cppad.hpp>

bool subgraph_sparsity(void)
{  bool ok = true;
   using CppAD::AD;
   typedef CPPAD_TESTVECTOR(size_t)     SizeVector;
   typedef CppAD::sparse_rc<SizeVector> sparsity;
   //
   // domain space vector
   size_t n = 2;
   CPPAD_TESTVECTOR(AD<double>) ax(n);
   ax[0] = 0.;
   ax[1] = 1.;

   // declare independent variables and start recording
   CppAD::Independent(ax);

   // range space vector
   size_t m = 3;
   CPPAD_TESTVECTOR(AD<double>) ay(m);
   ay[0] = ax[0];
   ay[1] = ax[0] * ax[1];
   ay[2] = ax[1];

   // create f: x -> y and stop tape recording
   CppAD::ADFun<double> f(ax, ay);
   ok &= f.size_random() == 0;

   // compute sparsite pattern for F'(x)
   CPPAD_TESTVECTOR(bool) select_domain(n), select_range(m);
   for(size_t j = 0; j < n; j++)
      select_domain[j] = true;
   for(size_t i = 0; i < m; i++)
      select_range[i] = true;
   bool transpose       = false;
   sparsity pattern_out;
   f.subgraph_sparsity(select_domain, select_range, transpose, pattern_out);

   // check sparsity pattern
   size_t nnz = pattern_out.nnz();
   ok        &= nnz == 4;
   ok        &= pattern_out.nr() == m;
   ok        &= pattern_out.nc() == n;
   {  // check results
      const SizeVector& row( pattern_out.row() );
      const SizeVector& col( pattern_out.col() );
      SizeVector col_major = pattern_out.col_major();
      //
      ok &= row[ col_major[0] ] ==  0  && col[ col_major[0] ] ==  0;
      ok &= row[ col_major[1] ] ==  1  && col[ col_major[1] ] ==  0;
      ok &= row[ col_major[2] ] ==  1  && col[ col_major[2] ] ==  1;
      ok &= row[ col_major[3] ] ==  2  && col[ col_major[3] ] ==  1;
   }
   // note that the transpose of the identity is the identity
   transpose     = true;
   f.subgraph_sparsity(select_domain, select_range, transpose, pattern_out);
   //
   nnz  = pattern_out.nnz();
   ok  &= nnz == 4;
   ok  &= pattern_out.nr() == n;
   ok  &= pattern_out.nc() == m;
   {  // check results
      const SizeVector& row( pattern_out.row() );
      const SizeVector& col( pattern_out.col() );
      SizeVector row_major = pattern_out.row_major();
      //
      ok &= col[ row_major[0] ] ==  0  && row[ row_major[0] ] ==  0;
      ok &= col[ row_major[1] ] ==  1  && row[ row_major[1] ] ==  0;
      ok &= col[ row_major[2] ] ==  1  && row[ row_major[2] ] ==  1;
      ok &= col[ row_major[3] ] ==  2  && row[ row_major[3] ] ==  1;
   }
   ok &= f.size_random() > 0;
   f.clear_subgraph();
   ok &= f.size_random() == 0;
   return ok;
}
// END C++