File: check_numeric_type.cpp

package info (click to toggle)
cppad 2026.00.00.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,584 kB
  • sloc: cpp: 112,960; sh: 6,146; ansic: 179; python: 71; sed: 12; makefile: 10
file content (187 lines) | stat: -rw-r--r-- 4,471 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------

/*
{xrst_begin check_numeric_type.cpp}

The CheckNumericType Function: Example and Test
###############################################

{xrst_literal
   // BEGIN C++
   // END C++
}

{xrst_end check_numeric_type.cpp}
*/
// BEGIN C++

# include <cppad/utility/check_numeric_type.hpp>
# include <cppad/utility/near_equal.hpp>


// Choosing a value between 1 and 10 selects a numeric class property to be
// omitted and result in an error message being generated
# define CppADMyTypeOmit 0

namespace { // Empty namespace

   // -------------------------------------------------------------------
   class MyType {
   private:
      double d;
   public:
      // constructor from void
      MyType(void) : d(0.)
      { }
      // constructor from an int
      MyType(int d_) : d(d_)
      { }
      // copy constructor
      MyType(const MyType &x)
      {  d = x.d; }
      // assignment operator
      void operator = (const MyType &x)
      {  d = x.d; }
      // member function that converts to double
      double Double(void) const
      {  return d; }
# if CppADMyTypeOmit != 1
      // unary plus
      MyType operator + (void) const
      {  MyType x;
         x.d =  d;
         return x;
      }
# endif
# if CppADMyTypeOmit != 2
      // unary plus
      MyType operator - (void) const
      {  MyType x;
         x.d = - d;
         return x;
      }
# endif
# if CppADMyTypeOmit != 3
      // binary addition
      MyType operator + (const MyType &x) const
      {  MyType y;
         y.d = d + x.d ;
         return y;
      }
# endif
# if CppADMyTypeOmit != 4
      // binary subtraction
      MyType operator - (const MyType &x) const
      {  MyType y;
         y.d = d - x.d ;
         return y;
      }
# endif
# if CppADMyTypeOmit != 5
      // binary multiplication
      MyType operator * (const MyType &x) const
      {  MyType y;
         y.d = d * x.d ;
         return y;
      }
# endif
# if CppADMyTypeOmit != 6
      // binary division
      MyType operator / (const MyType &x) const
      {  MyType y;
         y.d = d / x.d ;
         return y;
      }
# endif
# if CppADMyTypeOmit != 7
      // compound assignment addition
      void operator += (const MyType &x)
      {  d += x.d; }
# endif
# if CppADMyTypeOmit != 8
      // compound assignment subtraction
      void operator -= (const MyType &x)
      {  d -= x.d; }
# endif
# if CppADMyTypeOmit != 9
      // compound assignment multiplication
      void operator *= (const MyType &x)
      {  d *= x.d; }
# endif
# if CppADMyTypeOmit != 10
      // compound assignment division
      void operator /= (const MyType &x)
      {  d /= x.d; }
# endif
   };
   // -------------------------------------------------------------------
   /*
   Solve: A[0] * x[0] + A[1] * x[1] = b[0]
           A[2] * x[0] + A[3] * x[1] = b[1]
   */
   template <class NumericType>
   void Solve(NumericType *A, NumericType *x, NumericType *b)
   {
      // make sure NumericType satisfies its conditions
      CppAD::CheckNumericType<NumericType>();

      // copy b to x
      x[0] = b[0];
      x[1] = b[1];

      // copy A to work space
      NumericType W[4];
      W[0] = A[0];
      W[1] = A[1];
      W[2] = A[2];
      W[3] = A[3];

      // divide first row by W(1,1)
      W[1] /= W[0];
      x[0] /= W[0];
      W[0] = NumericType(1);

      // subtract W(2,1) times first row from second row
      W[3] -= W[2] * W[1];
      x[1] -= W[2] * x[0];
      W[2] = NumericType(0);

      // divide second row by W(2, 2)
      x[1] /= W[3];
      W[3]  = NumericType(1);

      // use first row to solve for x[0]
      x[0] -= W[1] * x[1];
   }
} // End Empty namespace

bool CheckNumericType(void)
{  bool ok  = true;
   using CppAD::NearEqual;
   double eps99 = 99.0 * std::numeric_limits<double>::epsilon();

   MyType A[4];
   A[0] = MyType(1); A[1] = MyType(2);
   A[2] = MyType(3); A[3] = MyType(4);

   MyType b[2];
   b[0] = MyType(1);
   b[1] = MyType(2);

   MyType x[2];
   Solve(A, x, b);

   MyType sum;
   sum = A[0] * x[0] + A[1] * x[1];
   ok &= NearEqual(sum.Double(), b[0].Double(), eps99, eps99);

   sum = A[2] * x[0] + A[3] * x[1];
   ok &= NearEqual(sum.Double(), b[1].Double(), eps99, eps99);

   return ok;
}

// END C++