File: lu_invert.cpp

package info (click to toggle)
cppad 2026.00.00.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,584 kB
  • sloc: cpp: 112,960; sh: 6,146; ansic: 179; python: 71; sed: 12; makefile: 10
file content (120 lines) | stat: -rw-r--r-- 3,281 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------

/*
{xrst_begin lu_invert.cpp}

LuInvert: Example and Test
##########################

{xrst_literal
   // BEGIN C++
   // END C++
}

{xrst_end lu_invert.cpp}
*/


// BEGIN C++
# include <cstdlib>               // for rand function
# include <cppad/utility/lu_invert.hpp>      // for CppAD::LuInvert
# include <cppad/utility/near_equal.hpp>     // for CppAD::NearEqual
# include <cppad/utility/vector.hpp>  // for CppAD::vector

bool LuInvert(void)
{  bool  ok = true;

# ifndef _MSC_VER
   using std::rand;
   using std::srand;
# endif
   double eps200 = 200.0 * std::numeric_limits<double>::epsilon();

   size_t  n = 7;                        // number rows in A
   size_t  m = 3;                        // number columns in B
   double  rand_max = double(RAND_MAX);  // maximum rand value
   double  sum;                          // element of L * U
   size_t  i, j, k;                      // temporary indices

   // dimension matrices
   CppAD::vector<double>
      A(n*n), X(n*m), B(n*m), LU(n*n), L(n*n), U(n*n);

   // seed the random number generator
   srand(123);

   // pivot vectors
   CppAD::vector<size_t> ip(n);
   CppAD::vector<size_t> jp(n);

   // set pivot vectors
   for(i = 0; i < n; i++)
   {  ip[i] = (i + 2) % n;      // ip = 2 , 3, ... , n-1, 0, 1
      jp[i] = (n + 2 - i) % n;  // jp = 2 , 1, n-1, n-2, ... , 3
   }

   // chose L, a random lower triangular matrix
   for(i = 0; i < n; i++)
   {  for(j = 0; j <= i; j++)
         L [i * n + j]  = rand() / rand_max;
      for(j = i+1; j < n; j++)
         L [i * n + j]  = 0.;
   }
   // chose U, a random upper triangular matrix with ones on diagonal
   for(i = 0; i < n; i++)
   {  for(j = 0; j < i; j++)
         U [i * n + j]  = 0.;
      U[ i * n + i ] = 1.;
      for(j = i+1; j < n; j++)
         U [i * n + j]  = rand() / rand_max;
   }
   // chose X, a random matrix
   for(i = 0; i < n; i++)
   {  for(k = 0; k < m; k++)
         X[i * m + k] = rand() / rand_max;
   }
   // set LU to a permuted combination of both L and U
   for(i = 0; i < n; i++)
   {  for(j = 0; j <= i; j++)
         LU [ ip[i] * n + jp[j] ]  = L[i * n + j];
      for(j = i+1; j < n; j++)
         LU [ ip[i] * n + jp[j] ]  = U[i * n + j];
   }
   // set A to a permuted version of L * U
   for(i = 0; i < n; i++)
   {  for(j = 0; j < n; j++)
      {  // compute (i,j) entry in permuted matrix
         sum = 0.;
         for(k = 0; k < n; k++)
            sum += L[i * n + k] * U[k * n + j];
         A[ ip[i] * n + jp[j] ] = sum;
      }
   }
   // set B to A * X
   for(i = 0; i < n; i++)
   {  for(k = 0; k < m; k++)
      {  // compute (i,k) entry of B
         sum = 0.;
         for(j = 0; j < n; j++)
            sum += A[i * n + j] * X[j * m + k];
         B[i * m + k] = sum;
      }
   }
   // solve for X
   CppAD::LuInvert(ip, jp, LU, B);

   // check result
   for(i = 0; i < n; i++)
   {  for(k = 0; k < m; k++)
      {  ok &= CppAD::NearEqual(
            X[i * m + k], B[i * m + k], eps200, eps200
         );
      }
   }
   return ok;
}

// END C++