1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin ode_err_control.cpp}
OdeErrControl: Example and Test
###############################
Define
:math:`X : \B{R} \rightarrow \B{R}^2` by
.. math::
:nowrap:
\begin{eqnarray}
X_0 (0) & = & 1 \\
X_1 (0) & = & 0 \\
X_0^{(1)} (t) & = & - \alpha X_0 (t) \\
X_1^{(1)} (t) & = & 1 / X_0 (t)
\end{eqnarray}
It follows that
.. math::
:nowrap:
\begin{eqnarray}
X_0 (t) & = & \exp ( - \alpha t ) \\
X_1 (t) & = & [ \exp( \alpha t ) - 1 ] / \alpha
\end{eqnarray}
This example tests OdeErrControl using the relations above.
Nan
***
Note that :math:`X_0 (t) > 0` for all :math:`t` and that the
ODE goes through a singularity between :math:`X_0 (t) > 0`
and :math:`X_0 (t) < 0`.
If :math:`X_0 (t) < 0`,
we return ``nan`` in order to inform
``OdeErrControl`` that its is taking to large a step.
{xrst_literal
// BEGIN C++
// END C++
}
{xrst_end ode_err_control.cpp}
*/
// BEGIN C++
# include <limits> // for quiet_NaN
# include <cstddef> // for size_t
# include <cmath> // for exp
# include <cppad/utility/ode_err_control.hpp> // CppAD::OdeErrControl
# include <cppad/utility/near_equal.hpp> // CppAD::NearEqual
# include <cppad/utility/vector.hpp> // CppAD::vector
# include <cppad/utility/runge_45.hpp> // CppAD::Runge45
namespace {
// --------------------------------------------------------------
class Fun {
private:
const double alpha_;
public:
// constructor
Fun(double alpha) : alpha_(alpha)
{ }
// set f = x'(t)
void Ode(
const double &t,
const CppAD::vector<double> &x,
CppAD::vector<double> &f)
{ f[0] = - alpha_ * x[0];
f[1] = 1. / x[0];
// case where ODE does not make sense
if( x[0] < 0. )
f[1] = std::numeric_limits<double>::quiet_NaN();
}
};
// --------------------------------------------------------------
class Method {
private:
Fun F;
public:
// constructor
Method(double alpha) : F(alpha)
{ }
void step(
double ta,
double tb,
CppAD::vector<double> &xa ,
CppAD::vector<double> &xb ,
CppAD::vector<double> &eb )
{ xb = CppAD::Runge45(F, 1, ta, tb, xa, eb);
}
size_t order(void)
{ return 4; }
};
}
bool OdeErrControl(void)
{ bool ok = true; // initial return value
double alpha = 10.;
Method method(alpha);
CppAD::vector<double> xi(2);
xi[0] = 1.;
xi[1] = 0.;
CppAD::vector<double> eabs(2);
eabs[0] = 1e-4;
eabs[1] = 1e-4;
// inputs
double ti = 0.;
double tf = 1.;
double smin = 1e-4;
double smax = 1.;
double scur = 1.;
double erel = 0.;
// outputs
CppAD::vector<double> ef(2);
CppAD::vector<double> xf(2);
CppAD::vector<double> maxabs(2);
size_t nstep;
xf = OdeErrControl(method,
ti, tf, xi, smin, smax, scur, eabs, erel, ef, maxabs, nstep);
double x0 = exp(-alpha*tf);
ok &= CppAD::NearEqual(x0, xf[0], 1e-4, 1e-4);
ok &= CppAD::NearEqual(0., ef[0], 1e-4, 1e-4);
double x1 = (exp(alpha*tf) - 1) / alpha;
ok &= CppAD::NearEqual(x1, xf[1], 1e-4, 1e-4);
ok &= CppAD::NearEqual(0., ef[1], 1e-4, 1e-4);
return ok;
}
// END C++
|