File: ode_gear.cpp

package info (click to toggle)
cppad 2026.00.00.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,584 kB
  • sloc: cpp: 112,960; sh: 6,146; ansic: 179; python: 71; sed: 12; makefile: 10
file content (176 lines) | stat: -rw-r--r-- 4,292 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-24 Bradley M. Bell
// ----------------------------------------------------------------------------

/*
{xrst_begin ode_gear.cpp}
{xrst_spell
   rclr
}

OdeGear: Example and Test
#########################

Define
:math:`x : \B{R} \rightarrow \B{R}^n` by

.. math::

   x_i (t) =  t^{i+1}

for :math:`i = 1 , \ldots , n-1`.
It follows that

.. math::

   \begin{array}{rclr}
   x_i(0)     & = & 0                             & {\rm for \; all \;} i \\
   x_i ' (t)  & = & 1                             & {\rm if \;} i = 0      \\
   x_i '(t)   & = & (i+1) t^i = (i+1) x_{i-1} (t) & {\rm if \;} i > 0
   \end{array}

The example tests OdeGear using the relations above:

{xrst_literal
   // BEGIN C++
   // END C++
}

{xrst_end ode_gear.cpp}
*/
// BEGIN C++

# include <cppad/utility/ode_gear.hpp>
# include <cppad/cppad.hpp>        // For automatic differentiation

namespace {
   class Fun {
   public:
      // constructor
      Fun(bool use_x_) : use_x(use_x_)
      { }

      // compute f(t, x) both for double and AD<double>
      template <class Scalar>
      void Ode(
         const Scalar                    &t,
         const CPPAD_TESTVECTOR(Scalar) &x,
         CPPAD_TESTVECTOR(Scalar)       &f)
      {  size_t n  = x.size();
         Scalar ti(1);
         f[0]   = Scalar(1);
         size_t i;
         for(i = 1; i < n; i++)
         {  ti *= t;
            // convert int(size_t) to avoid warning
            // on _MSC_VER systems
            if( use_x )
               f[i] = int(i+1) * x[i-1];
            else
               f[i] = int(i+1) * ti;
         }
      }

      void Ode_dep(
         const double                    &t,
         const CPPAD_TESTVECTOR(double) &x,
         CPPAD_TESTVECTOR(double)       &f_x)
      {  using namespace CppAD;

         size_t n  = x.size();
         CPPAD_TESTVECTOR(AD<double>) T(1);
         CPPAD_TESTVECTOR(AD<double>) X(n);
         CPPAD_TESTVECTOR(AD<double>) F(n);

         // set argument values
         T[0] = t;
         size_t i, j;
         for(i = 0; i < n; i++)
            X[i] = x[i];

         // declare independent variables
         Independent(X);

         // compute f(t, x)
         this->Ode(T[0], X, F);

         // define AD function object
         ADFun<double> fun(X, F);

         // compute partial of f w.r.t x
         CPPAD_TESTVECTOR(double) dx(n);
         CPPAD_TESTVECTOR(double) df(n);
         for(j = 0; j < n; j++)
            dx[j] = 0.;
         for(j = 0; j < n; j++)
         {  dx[j] = 1.;
            df = fun.Forward(1, dx);
            for(i = 0; i < n; i++)
               f_x [i * n + j] = df[i];
            dx[j] = 0.;
         }
      }

   private:
      const bool use_x;

   };
}

bool OdeGear(void)
{  bool ok = true; // initial return value
   size_t i, j;    // temporary indices
   double eps99 = 99.0 * std::numeric_limits<double>::epsilon();

   size_t  m = 4;  // index of next value in X
   size_t  n = m;  // number of components in x(t)

   // vector of times
   CPPAD_TESTVECTOR(double) T(m+1);
   double step = .1;
   T[0]        = 0.;
   for(j = 1; j <= m; j++)
   {  T[j] = T[j-1] + step;
      step = 2. * step;
   }

   // initial values for x( T[m-j] )
   CPPAD_TESTVECTOR(double) X((m+1) * n);
   for(j = 0; j < m; j++)
   {  double ti = T[j];
      for(i = 0; i < n; i++)
      {  X[ j * n + i ] = ti;
         ti *= T[j];
      }
   }

   // error bound
   CPPAD_TESTVECTOR(double) e(n);

   size_t use_x;
   for( use_x = 0; use_x < 2; use_x++)
   {  // function object depends on value of use_x
      Fun F(use_x > 0);

      // compute OdeGear approximation for x( T[m] )
      CppAD::OdeGear(F, m, n, T, X, e);

      double check = T[m];
      for(i = 0; i < n; i++)
      {  // method is exact up to order m and x[i] = t^{i+1}
         if( i + 1 <= m ) ok &= CppAD::NearEqual(
            X[m * n + i], check, eps99, eps99
         );
         // error bound should be zero up to order m-1
         if( i + 1 < m ) ok &= CppAD::NearEqual(
            e[i], 0., eps99, eps99
         );
         // check value for next i
         check *= T[m];
      }
   }
   return ok;
}

// END C++