File: mat_mul.cpp

package info (click to toggle)
cppad 2026.00.00.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,584 kB
  • sloc: cpp: 112,960; sh: 6,146; ansic: 179; python: 71; sed: 12; makefile: 10
file content (149 lines) | stat: -rw-r--r-- 4,331 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-24 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin adolc_mat_mul.cpp}

Adolc Speed: Matrix Multiplication
##################################

Specifications
**************
See :ref:`link_mat_mul-name` .

Implementation
**************

{xrst_spell_off}
{xrst_code cpp} */
// suppress conversion warnings before other includes
# include <cppad/wno_conversion.hpp>
//
# include <adolc/adolc.h>
# include <cppad/utility/vector.hpp>
# include <cppad/speed/mat_sum_sq.hpp>
# include <cppad/speed/uniform_01.hpp>
# include <cppad/utility/vector.hpp>

// list of possible options
# include <map>
extern std::map<std::string, bool> global_option;

bool link_mat_mul(
   size_t                           size     ,
   size_t                           repeat   ,
   CppAD::vector<double>&           x        ,
   CppAD::vector<double>&           z        ,
   CppAD::vector<double>&           dz       )
{
   // speed test global option values
   if( global_option["memory"] || global_option["atomic"] || global_option["optimize"] )
      return false;
   // -----------------------------------------------------
   // setup
   typedef adouble    ADScalar;
   typedef ADScalar*  ADVector;

   short tag  = 0;                // tape identifier
   int   m    = 1;                // number of dependent variables
   int   n    = int(size * size); // number of independent variables
   double f;                      // function value
   int j;                         // temporary index

   // set up for thread_alloc memory allocator (fast and checks for leaks)
   using CppAD::thread_alloc; // the allocator
   size_t capacity;           // capacity of an allocation

   // AD domain space vector
   ADVector X = thread_alloc::create_array<ADScalar>(size_t(n), capacity);

   // Product matrix
   ADVector Y = thread_alloc::create_array<ADScalar>(size_t(n), capacity);

   // AD range space vector
   ADVector Z = thread_alloc::create_array<ADScalar>(size_t(m), capacity);

   // vector with matrix value
   double* mat = thread_alloc::create_array<double>(size_t(n), capacity);

   // vector of reverse mode weights
   double* u  = thread_alloc::create_array<double>(size_t(m), capacity);
   u[0] = 1.;

   // gradient
   double* grad = thread_alloc::create_array<double>(size_t(n), capacity);

   // ----------------------------------------------------------------------
   if( ! global_option["onetape"] ) while(repeat--)
   {  // choose a matrix
      CppAD::uniform_01( size_t(n), mat);

      // declare independent variables
      int keep = 1; // keep forward mode results
      trace_on(tag, keep);
      for(j = 0; j < n; j++)
         X[j] <<= mat[j];

      // do computations
      CppAD::mat_sum_sq(size, X, Y, Z);

      // create function object f : X -> Z
      Z[0] >>= f;
      trace_off();

      // evaluate and return gradient using reverse mode
      fos_reverse(tag, m, n, u, grad);
   }
   else
   {  // choose a matrix
      CppAD::uniform_01( size_t(n), mat);

      // declare independent variables
      int keep = 0; // do not keep forward mode results
      trace_on(tag, keep);
      for(j = 0; j < n; j++)
         X[j] <<= mat[j];

      // do computations
      CppAD::mat_sum_sq(size, X, Y, Z);

      // create function object f : X -> Z
      Z[0] >>= f;
      trace_off();

      while(repeat--)
      {  // choose a matrix
         CppAD::uniform_01( size_t(n), mat);

         // evaluate the determinant at the new matrix value
         keep = 1; // keep this forward mode result
         zos_forward(tag, m, n, keep, mat, &f);

         // evaluate and return gradient using reverse mode
         fos_reverse(tag, m, n, u, grad);
      }
   }
   // return function, matrix, and gradient
   z[0] = f;
   for(j = 0; j < n; j++)
   {  x[j]  = mat[j];
      dz[j] = grad[j];
   }

   // tear down
   thread_alloc::delete_array(X);
   thread_alloc::delete_array(Y);
   thread_alloc::delete_array(Z);
   thread_alloc::delete_array(mat);
   thread_alloc::delete_array(u);
   thread_alloc::delete_array(grad);

   return true;
}

/* {xrst_code}
{xrst_spell_on}

{xrst_end adolc_mat_mul.cpp}
*/