File: det_minor.cpp

package info (click to toggle)
cppad 2026.00.00.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,584 kB
  • sloc: cpp: 112,960; sh: 6,146; ansic: 179; python: 71; sed: 12; makefile: 10
file content (213 lines) | stat: -rw-r--r-- 6,454 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-24 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin cppadcg_det_minor.cpp}

cppadcg Speed: Gradient of Determinant by Minor Expansion
#########################################################

Specifications
**************
See :ref:`link_det_minor-name` .

PASS_JACOBIAN_TO_CODE_GEN
*************************
If this is one, the Jacobian of the determinant is the function passed
to CppADCodeGen.  In this case,  the ``code_gen_fun``
:ref:`code_gen_fun@Syntax@function` is used to calculate
the Jacobian of the determinant.
Otherwise, this flag is zero and the determinant function is passed
to CppADCodeGen. In this case, the ``code_gen_fun``
:ref:`code_gen_fun@Syntax@jacobian` is used to calculate
the Jacobian of the determinant.
{xrst_spell_off}
{xrst_code cpp} */
# define PASS_JACOBIAN_TO_CODE_GEN 1
/* {xrst_code}
{xrst_spell_on}

Implementation
**************
{xrst_spell_off}
{xrst_code cpp} */
# include <cppad/speed/det_by_minor.hpp>
# include <cppad/speed/uniform_01.hpp>
# include <cppad/utility/vector.hpp>
# include <cppad/example/code_gen_fun.hpp>

# include <map>
extern std::map<std::string, bool> global_option;

namespace {
   //
   // typedefs
   typedef CppAD::cg::CG<double>     c_double;
   typedef CppAD::AD<c_double>      ac_double;
   typedef CppAD::vector<double>     d_vector;
   typedef CppAD::vector<ac_double> ac_vector;
   //
   // setup
   void setup(
      // inputs
      size_t size     ,
      // outputs
      code_gen_fun& fun )
   {  // optimization options
      std::string optimize_options =
         "no_conditional_skip no_compare_op no_print_for_op";
      //
      // object for computing determinant
      CppAD::det_by_minor<ac_double>   ac_det(size);
      //
      // number of independent variables
      size_t nx = size * size;
      //
      // choose a matrix
      CppAD::vector<double> matrix(nx);
      CppAD::uniform_01(nx, matrix);
      //
      // copy to independent variables
      ac_vector   ac_A(nx);
      for(size_t j = 0; j < nx; ++j)
         ac_A[j] = matrix[j];
      //
      // declare independent variables for function computation
      bool record_compare   = false;
      size_t abort_op_index = 0;
      CppAD::Independent(ac_A, abort_op_index, record_compare);
      //
      // AD computation of the determinant
      ac_vector ac_detA(1);
      ac_detA[0] = ac_det(ac_A);
      //
      // create function objects for f : A -> detA
      CppAD::ADFun<c_double>            c_f;
      c_f.Dependent(ac_A, ac_detA);
      if( global_option["optimize"] )
         c_f.optimize(optimize_options);
# if ! PASS_JACOBIAN_TO_CODE_GEN
      // f(x) is the determinant function
      code_gen_fun::evaluation_enum eval_jac = code_gen_fun::dense_enum;
      code_gen_fun f_tmp("det_minor", c_f, eval_jac);
      fun.swap(f_tmp);
# else
      CppAD::ADFun<ac_double, c_double> ac_f;
      ac_f = c_f.base2ad();
      //
      // declare independent variables for gradient computation
      CppAD::Independent(ac_A, abort_op_index, record_compare);
      //
      // vectors of reverse mode weights
      CppAD::vector<ac_double> ac_w(1);
      ac_w[0] = ac_double(1.0);
      //
      // AD computation of the gradient
      ac_vector ac_gradient(nx);
      ac_f.Forward(0, ac_A);
      ac_gradient = ac_f.Reverse(1, ac_w);
      //
      // create function objects for g : A -> det'( detA  )
      CppAD::ADFun<c_double> c_g;
      c_g.Dependent(ac_A, ac_gradient);
      if( global_option["optimize"] )
         c_g.optimize(optimize_options);
      // g(x) is the Jacobian of the determinant
      code_gen_fun g_tmp("det_minor", c_g);
      fun.swap(g_tmp);
# endif
   }
}

bool link_det_minor(
   const std::string&         job      ,
   size_t                     size     ,
   size_t                     repeat   ,
   CppAD::vector<double>     &matrix   ,
   CppAD::vector<double>     &gradient )
{  CPPAD_ASSERT_UNKNOWN( matrix.size() == size * size );
   CPPAD_ASSERT_UNKNOWN( gradient.size() == size * size );
   // --------------------------------------------------------------------
   // check global options
   const char* valid[] = { "onetape", "optimize"};
   size_t n_valid = sizeof(valid) / sizeof(valid[0]);
   typedef std::map<std::string, bool>::iterator iterator;
   //
   for(iterator itr=global_option.begin(); itr!=global_option.end(); ++itr)
   {  if( itr->second )
      {  bool ok = false;
         for(size_t i = 0; i < n_valid; i++)
            ok |= itr->first == valid[i];
         if( ! ok )
            return false;
      }
   }
   // --------------------------------------------------------------------
   //
   // function object mapping matrix to gradient of determinant
   static code_gen_fun static_fun;
   //
   // size corresponding static_fun
   static size_t static_size = 0;
   //
   // number of independent variables
   size_t nx = size * size;
   //
   // onetape
   bool onetape = global_option["onetape"];
   // ----------------------------------------------------------------------
   if( job == "setup" )
   {  if( onetape )
      {  setup(size, static_fun);
         static_size = size;
      }
      else
      {  static_size = 0;
      }
      return true;
   }
   if( job ==  "teardown" )
   {  code_gen_fun fun;
      static_fun.swap(fun);
      return true;
   }
   // -----------------------------------------------------------------------
   CPPAD_ASSERT_UNKNOWN( job == "run" );
   if( onetape ) while(repeat--)
   {  // use if before assert to avoid warning that static_size is not used
      if( size != static_size )
      {  CPPAD_ASSERT_UNKNOWN( size == static_size );
      }

      // get next matrix
      CppAD::uniform_01(nx, matrix);

      // evaluate the gradient
# if PASS_JACOBIAN_TO_CODE_GEN
      gradient = static_fun(matrix);
# else
      gradient = static_fun.jacobian(matrix);
# endif
   }
   else while(repeat--)
   {  setup(size, static_fun);
      static_size = size;

      // get next matrix
      CppAD::uniform_01(nx, matrix);

      // evaluate the gradient
# if PASS_JACOBIAN_TO_CODE_GEN
      gradient = static_fun(matrix);
# else
      gradient = static_fun.jacobian(matrix);
# endif
   }
   return true;
}
/* {xrst_code}
{xrst_spell_on}

{xrst_end cppadcg_det_minor.cpp}
*/