1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-24 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin cppadcg_sparse_jacobian.cpp}
Cppadcg Speed: Sparse Jacobian
##############################
Specifications
**************
See :ref:`link_sparse_jacobian-name` .
PASS_SPARSE_JACOBIAN_TO_CODE_GEN
********************************
If this is one, the sparse Jacobian is the is the function passed
to CppADCodeGen, In this case, the ``code_gen_fun``
:ref:`code_gen_fun@Syntax@function` is used to calculate
the sparse Jacobian.
Otherwise, this flag is zero and the original function passed
to CppADCodeGen. In this case, the ``code_gen_fun``
:ref:`code_gen_fun@Syntax@sparse_jacobian`
is used to calculate the sparse Jacobian.
{xrst_spell_off}
{xrst_code cpp} */
# define PASS_SPARSE_JACOBIAN_TO_CODE_GEN 1
/* {xrst_code}
{xrst_spell_on}
Implementation
**************
{xrst_spell_off}
{xrst_code cpp} */
# include <cppad/speed/uniform_01.hpp>
# include <cppad/utility/vector.hpp>
# include <cppad/speed/sparse_jac_fun.hpp>
# include <cppad/example/code_gen_fun.hpp>
# include <map>
extern std::map<std::string, bool> global_option;
namespace {
// -----------------------------------------------------------------------
// typedefs
typedef CppAD::cg::CG<double> c_double;
typedef CppAD::AD<c_double> ac_double;
typedef CppAD::vector<bool> b_vector;
typedef CppAD::vector<size_t> s_vector;
typedef CppAD::vector<double> d_vector;
typedef CppAD::vector<ac_double> ac_vector;
typedef CppAD::sparse_rc<s_vector> sparsity;
// ------------------------------------------------------------------------
# if PASS_SPARSE_JACOBIAN_TO_CODE_GEN
// calc_sparsity
void calc_sparsity(
CppAD::sparse_rc<s_vector>& pattern ,
CppAD::ADFun<c_double>& f )
{ bool reverse = global_option["revsparsity"];
bool transpose = false;
bool internal_bool = global_option["boolsparsity"];
bool dependency = false;
bool subgraph = global_option["subsparsity"];
size_t n = f.Domain();
size_t m = f.Range();
if( subgraph )
{ b_vector select_domain(n), select_range(m);
for(size_t j = 0; j < n; ++j)
select_domain[j] = true;
for(size_t i = 0; i < m; ++i)
select_range[i] = true;
f.subgraph_sparsity(
select_domain, select_range, transpose, pattern
);
}
else
{ size_t q = n;
if( reverse )
q = m;
//
CppAD::sparse_rc<s_vector> identity;
identity.resize(q, q, q);
for(size_t k = 0; k < q; k++)
identity.set(k, k, k);
//
if( reverse )
{ f.rev_jac_sparsity(
identity, transpose, dependency, internal_bool, pattern
);
}
else
{ f.for_jac_sparsity(
identity, transpose, dependency, internal_bool, pattern
);
}
}
}
# endif // PASS_SPARSE_JACOBIAN_TO_CODE_GEN
// -------------------------------------------------------------------------
// setup
void setup(
// inputs
size_t size ,
const s_vector& row ,
const s_vector& col ,
// outputs
size_t& n_color ,
code_gen_fun& fun ,
s_vector& row_major )
{ // optimization options
std::string optimize_options =
"no_conditional_skip no_compare_op no_print_for_op";
//
// independent variable vector
size_t nc = size;
ac_vector ac_x(nc);
//
// dependent variable vector
size_t nr = 2 * nc;
ac_vector ac_y(nr);
//
// values of independent variables do not matter
for(size_t j = 0; j < nc; j++)
ac_x[j] = ac_double( double(j) / double(nc) );
//
// declare independent variables
size_t abort_op_index = 0;
bool record_compare = false;
CppAD::Independent(ac_x, abort_op_index, record_compare);
//
// AD computation of f(x) (order zero derivative is function value)
size_t order = 0;
CppAD::sparse_jac_fun<ac_double>(nr, nc, ac_x, row, col, order, ac_y);
//
// create function object f : x -> y
CppAD::ADFun<c_double> c_f;
CppAD::ADFun<ac_double, c_double> ac_f;
c_f.Dependent(ac_x, ac_y);
if( global_option["optimize"] )
c_f.optimize(optimize_options);
//
// number of non-zeros in sparsity pattern for Jacobian
# if ! PASS_SPARSE_JACOBIAN_TO_CODE_GEN
// set fun
code_gen_fun::evaluation_enum eval_jac = code_gen_fun::sparse_enum;
code_gen_fun f_tmp("sparse_jacobian", c_f, eval_jac);
fun.swap(f_tmp);
//
// set row_major
d_vector x(nc);
CppAD::uniform_01(nc, x);
CppAD::sparse_rcv<s_vector, d_vector> Jrcv = fun.sparse_jacobian(x);
row_major = Jrcv.row_major();
# ifndef NDEBUG
size_t nnz = row.size();
CPPAD_ASSERT_UNKNOWN( row_major.size() == nnz );
for(size_t k = 0; k < nnz; ++k)
{ size_t ell = row_major[k];
CPPAD_ASSERT_UNKNOWN(
Jrcv.row()[ell] == row[k] && Jrcv.col()[ell] == col[k]
);
}
# endif
//
# else // PASS_SPARSE_JACOBIAN_TO_CODE_GEN
//
// sparsity pattern for subset of Jacobian pattern that is evaluated
size_t nnz = row.size();
sparsity subset_pattern(nr, nc, nnz);
for(size_t k = 0; k < nnz; ++k)
subset_pattern.set(k, row[k], col[k]);
//
// spoarse matrix for subset of Jacobian that is evaluated
CppAD::sparse_rcv<s_vector, ac_vector> ac_subset( subset_pattern );
//
// coloring method
std::string coloring = "cppad";
# if CPPAD_HAS_COLPACK
if( global_option["colpack"] )
coloring = "colpack";
# endif
//
// maximum number of colors at once
size_t group_max = 1;
ac_f = c_f.base2ad();
//
// declare independent variables for jacobian computation
CppAD::Independent(ac_x, abort_op_index, record_compare);
//
if( global_option["subgraph"] )
{ // use reverse mode because forward not yet implemented
ac_f.subgraph_jac_rev(ac_x, ac_subset);
n_color = 0;
}
else
{ // calculate the Jacobian sparsity pattern for this function
sparsity pattern;
calc_sparsity(pattern, c_f);
//
// use forward mode to compute Jacobian
CppAD::sparse_jac_work work;
n_color = ac_f.sparse_jac_for(
group_max, ac_x, ac_subset, pattern, coloring, work
);
}
const ac_vector ac_val ( ac_subset.val() );
//
// create function g : x -> f'(x)
CppAD::ADFun<c_double> c_g;
c_g.Dependent(ac_x, ac_val);
if( global_option["optimize"] )
c_g.optimize(optimize_options);
code_gen_fun g_tmp("sparse_jacobian", c_g);
//
// set return value
fun.swap(g_tmp);
# endif // PASS_SPARSE_JACOBIAN_TO_CODE_GEN
return;
}
}
bool link_sparse_jacobian(
const std::string& job ,
size_t size ,
size_t repeat ,
size_t m ,
const CppAD::vector<size_t>& row ,
const CppAD::vector<size_t>& col ,
CppAD::vector<double>& x ,
CppAD::vector<double>& jacobian ,
size_t& n_color )
{ assert( x.size() == size );
assert( jacobian.size() == row.size() );
// --------------------------------------------------------------------
// check global options
const char* valid[] = {
"memory", "onetape", "optimize", "subgraph",
"boolsparsity", "revsparsity", "subsparsity"
# if CPPAD_HAS_COLPACK
, "colpack"
# endif
};
size_t n_valid = sizeof(valid) / sizeof(valid[0]);
typedef std::map<std::string, bool>::iterator iterator;
//
for(iterator itr=global_option.begin(); itr!=global_option.end(); ++itr)
{ if( itr->second )
{ bool ok = false;
for(size_t i = 0; i < n_valid; i++)
ok |= itr->first == valid[i];
if( ! ok )
return false;
}
}
if( global_option["subsparsity"] )
{ if( global_option["boolsparisty"]
|| global_option["revsparsity"]
|| global_option["colpack"] )
return false;
}
// -----------------------------------------------------
// size corresponding to static_fun
static size_t static_size = 0;
//
// function object mapping x to f'(x)
static code_gen_fun static_fun;
//
// row_major order for Jrcv
static s_vector static_row_major;
//
# if ! PASS_SPARSE_JACOBIAN_TO_CODE_GEN
// code gen value for sparse jacobian
CppAD::sparse_rcv<s_vector, d_vector> Jrcv;
# endif
//
// number of independent variables
size_t nx = size;
//
bool onetape = global_option["onetape"];
//
// default return value
n_color = 0;
// -----------------------------------------------------
if( job == "setup" )
{ if( onetape )
{ // sets n_color when ontape is true
setup(size, row, col, n_color, static_fun, static_row_major);
static_size = size;
}
else
{ static_size = 0;
}
return true;
}
if( job == "teardown" )
{ code_gen_fun f_tmp;
static_fun.swap(f_tmp);
static_row_major.clear();
//
static_size = 0;
return true;
}
// -----------------------------------------------------
CPPAD_ASSERT_UNKNOWN( job == "run" )
if( onetape ) while(repeat--)
{ // use if before assert to avoid warning that static_size is not used
if( size != static_size )
{ CPPAD_ASSERT_UNKNOWN( size == static_size );
}
// get next x
CppAD::uniform_01(nx, x);
// evaluate the jacobian
# if PASS_SPARSE_JACOBIAN_TO_CODE_GEN
jacobian = static_fun(x);
# else
Jrcv = static_fun.sparse_jacobian(x);
CPPAD_ASSERT_UNKNOWN( Jrcv.nnz() == jacobian.size() );
for(size_t k = 0; k < row.size(); ++k)
jacobian[k] = Jrcv.val()[ static_row_major[k] ];
# endif
}
else while(repeat--)
{ // sets n_color when ontape is false
setup(size, row, col, n_color, static_fun, static_row_major);
static_size = size;
// get next x
CppAD::uniform_01(nx, x);
// evaluate the jacobian
# if PASS_SPARSE_JACOBIAN_TO_CODE_GEN
jacobian = static_fun(x);
# else
Jrcv = static_fun.sparse_jacobian(x);
CPPAD_ASSERT_UNKNOWN( Jrcv.nnz() == jacobian.size() );
for(size_t k = 0; k < row.size(); ++k)
jacobian[k] = Jrcv.val()[ static_row_major[k] ];
# endif
}
return true;
}
/* {xrst_code}
{xrst_spell_on}
{xrst_end cppadcg_sparse_jacobian.cpp}
*/
|