File: sparse_hes_fun.cpp

package info (click to toggle)
cppad 2026.00.00.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,584 kB
  • sloc: cpp: 112,960; sh: 6,146; ansic: 179; python: 71; sed: 12; makefile: 10
file content (75 lines) | stat: -rw-r--r-- 1,868 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
{xrst_begin sparse_hes_fun.cpp}

sparse_hes_fun: Example and test
################################

{xrst_literal
   // BEGIN C++
   // END C++
}

{xrst_end sparse_hes_fun.cpp}
*/
// BEGIN C++
# include <cppad/speed/sparse_hes_fun.hpp>
# include <cppad/speed/uniform_01.hpp>
# include <cppad/cppad.hpp>

bool sparse_hes_fun(void)
{  using CppAD::NearEqual;
   bool ok = true;

   typedef CppAD::AD<double> ADScalar;

   size_t j, k;
   double eps = 10. * CppAD::numeric_limits<double>::epsilon();
   size_t n   = 5;
   size_t m   = 1;
   size_t K   = 2 * n;
   CppAD::vector<size_t>       row(K),  col(K);
   CppAD::vector<double>       x(n),    ypp(K);
   CppAD::vector<ADScalar>     a_x(n),  a_y(m);

   // choose x
   for(j = 0; j < n; j++)
      a_x[j] = x[j] = double(j + 1);

   // choose row, col
   for(k = 0; k < K; k++)
   {  row[k] = k % 3;
      col[k] = k / 3;
   }
   for(k = 0; k < K; k++)
   {  for(size_t k1 = 0; k1 < K; k1++)
         assert( k == k1 || row[k] != row[k1] || col[k] != col[k1] );
   }

   // declare independent variables
   Independent(a_x);

   // evaluate function
   size_t order = 0;
   CppAD::sparse_hes_fun<ADScalar>(n, a_x, row, col, order, a_y);

   // evaluate Hessian
   order = 2;
   CppAD::sparse_hes_fun<double>(n, x, row, col, order, ypp);

   // use AD to evaluate Hessian
   CppAD::ADFun<double>   f(a_x, a_y);
   CppAD::vector<double>  hes(n * n);
   // compoute Hessian of f_0 (x)
   hes = f.Hessian(x, 0);

   for(k = 0; k < K; k++)
   {  size_t index = row[k] * n + col[k];
      ok &= NearEqual(hes[index], ypp[k] , eps, eps);
   }
   return ok;
}
// END C++