File: main.cpp

package info (click to toggle)
cppad 2026.00.00.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,584 kB
  • sloc: cpp: 112,960; sh: 6,146; ansic: 179; python: 71; sed: 12; makefile: 10
file content (843 lines) | stat: -rw-r--r-- 26,176 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-24 Bradley M. Bell
// ----------------------------------------------------------------------------

# include <cstring>
# include <cstdlib>
# include <cassert>
# include <cstddef>
# include <iostream>
# include <iomanip>
# include <map>
# include <cppad/utility/vector.hpp>
# include <cppad/speed/det_grad_33.hpp>
# include <cppad/speed/det_33.hpp>
# include <cppad/speed/uniform_01.hpp>
# include <cppad/utility/poly.hpp>
# include <cppad/utility/track_new_del.hpp>
# include <cppad/utility/thread_alloc.hpp>

# ifdef CPPAD_ADOLC_SPEED
# define AD_PACKAGE "adolc"
# endif
# ifdef CPPAD_CPPAD_SPEED
# define AD_PACKAGE "cppad"
# endif
# ifdef CPPAD_DOUBLE_SPEED
# define AD_PACKAGE "double"
# endif
# ifdef CPPAD_FADBAD_SPEED
# define AD_PACKAGE "fadbad"
# endif
# ifdef CPPAD_PROFILE_SPEED
# define AD_PACKAGE "profile"
# endif
# ifdef CPPAD_SACADO_SPEED
# define AD_PACKAGE "sacado"
# endif
# ifdef CPPAD_CPPADCG_SPEED
# define AD_PACKAGE "cppadcg"
# endif
# ifdef CPPAD_CPPAD_JIT_SPEED
# define AD_PACKAGE "cppad_jit"
# endif
# ifdef CPPAD_XPACKAGE_SPEED
# define AD_PACKAGE "xpackage"
# endif

/*
{xrst_begin speed_main}
{xrst_spell
   boolsparsity
   onetape
   optionlist
   retaped
   revsparsity
   subgraphs
   subsparsity
   underbar
}

Running the Speed Test Program
##############################

Syntax
******
| ``speed/`` *package* / ``speed_`` *package* *test* *seed* *option_list*

Purpose
*******
A version of this program runs the correctness tests
or the speed tests for one AD package identified by *package* .

package
*******

AD Package
==========
The command line argument
*package* specifies one of the AD package.
The CppAD distribution comes with support for the following packages:
:ref:`adolc<speed_adolc-name>` ,
:ref:`cppad<speed_cppad-name>` ,
:ref:`fadbad<speed_fadbad-name>` ,
:ref:`sacado<speed_sacado-name>` ,
:ref:`cppadcg<speed_cppadcg-name>` .
You can extend this program to include other package;
see :ref:`speed_xpackage-name` .

double
======
The value
*package* can be ``double`` in which case
the function values (instead of derivatives) are computed
using double precision operations.
This enables one to compare the speed of computing function
values in ``double`` to the speed of the derivative computations.
(It is often useful to divide the speed of the derivative computation by
the speed of the function evaluation in ``double`` .)

profile
=======
In the special case where *package* is ``profile`` ,
the CppAD package is compiled and run with profiling to aid in determining
where it is spending most of its time.

test
****
The argument *test* specifies which test to run
and has the following possible values:
:ref:`speed_main@test@correct` ,
:ref:`speed_main@test@speed` ,
:ref:`det_minor<link_det_minor-name>` ,
:ref:`det_lu<link_det_lu-name>` ,
:ref:`mat_mul<link_mat_mul-name>` ,
:ref:`ode<link_ode-name>` ,
:ref:`poly<link_poly-name>` ,
:ref:`sparse_hessian<link_sparse_hessian-name>` ,
:ref:`sparse_jacobian<link_sparse_jacobian-name>` .
You can experiment with changing the implementation of a
particular test for a particular package.

correct
=======
If *test* is equal to ``correct`` ,
all of the correctness tests are run.

speed
=====
If *test* is equal to ``speed`` ,
all of the speed tests are run.

seed
****
The command line argument *seed* is an unsigned integer
(all its characters are between 0 and 9).
The random number simulator :ref:`uniform_01-name` is initialized with
the call

   ``uniform_01`` ( *seed* )

before any of the testing routines (listed above) are called.

Global Options
**************
This global variable has prototype
{xrst_spell_off}
{xrst_code cpp}
   extern std::map<std::string, bool> global_option;
{xrst_code}
{xrst_spell_on}
The syntax

   ``global_option`` [" *option* "]

has the value true, if *option* is present,
and false otherwise.
This is true for each option that follows *seed* .
The order of the options does not matter and the list can be empty.
Each option, is be a separate command line argument to the main program.
The documentation below specifics how the
:ref:`speed_cppad-name` program uses these options.
It is the intention that other packages use each option in a similar
way or make it invalid.
The implementation of each test should check that the option
setting are valid for that test and if not it should return false;
for example, see the source code for :ref:`adolc_sparse_hessian.cpp-name` .

onetape
=======
If this option is present,
:ref:`speed_cppad-name` will use one taping of the operation
sequence for all the repetitions of that speed test.
Otherwise, the
:ref:`operation sequence<glossary@Operation@Sequence>`
will be retaped for each test repetition.

All of the tests, except :ref:`det_lu<link_det_lu-name>` ,
have the same operation sequence for each repetition.
The operation sequence for ``det_lu``
may be different because it depends on the matrix for which the determinant
is being calculated.
For this reason, :ref:`cppad_det_lu.cpp-name` returns false,
to indicate that the test not implemented,
when ``global_onetape`` is true.

memory
======
This option is special because individual CppAD speed tests need not do
anything different if this option is true or false.
If the ``memory`` option is present, the CppAD
:ref:`hold_memory<ta_hold_memory-name>` routine will be called by
the speed test main program before any of the tests are executed
This should make the CppAD ``thread_alloc`` allocator faster.
If it is not present, CppAD will used standard memory allocation.
Another package might use this option for a different
memory allocation method.

optimize
========
If this option is present,
CppAD will :ref:`optimize-name`
the operation sequence before doing computations.
If it is false, this optimization will not be done.
Note that this option is usually slower unless it is combined with the
``onetape`` option.

val_graph
=========
If this option and optimize are present,
CppAD will add the :code:`optimize@options@val_graph` option to
the optimization of the operation sequence.

atomic
======
If this option is present,
CppAD will use a user defined
:ref:`atomic<atomic_two-name>` operation is used for the test.
So far, CppAD has only implemented
the :ref:`mat_mul<link_mat_mul-name>` test as an atomic operation.

hes2jac
=======
If this option is present,
:ref:`speed_cppad-name` will compute hessians as the Jacobian
of the gradient.
This is accomplished using
:ref:`multiple levels<mul_level-name>` of AD.
So far, CppAD has only implemented
the :ref:`sparse_hessian<link_sparse_hessian-name>`
test in this manner.

subgraph
========
If this option is present,
:ref:`speed_cppad-name` will compute sparse Jacobians using subgraphs.
The CppAD :ref:`sparse_jacobian<link_sparse_jacobian-name>`
test is implemented for this option.
In addition, the CppAD :ref:`sparse_hessian<link_sparse_hessian-name>`
test is implemented for this option when ``hes2jac`` is present.

Sparsity Options
****************
The following options only apply to the
:ref:`sparse_jacobian<link_sparse_jacobian-name>` and
:ref:`sparse_hessian<link_sparse_hessian-name>` tests.
The other tests return false when any of these options
are present.

boolsparsity
============
If this option is present, CppAD will use a
:ref:`vectors of bool<glossary@Sparsity Pattern@Boolean Vector>`
to compute sparsity patterns.
Otherwise CppAD will use
:ref:`vectors of sets<glossary@Sparsity Pattern@Vector of Sets>` .

revsparsity
===========
If this option is present,
CppAD will use reverse mode for to compute sparsity patterns.
Otherwise CppAD will use forward mode.

subsparsity
===========
If this option is present,
CppAD will use subgraphs to compute sparsity patterns.
If
``boolsparsity`` , ``revsparsity`` , or ``colpack`` is also present,
the CppAD speed tests will return false; i.e., these options are not
supported by :ref:`subgraph_sparsity-name` .

colpack
=======
If this option is present,
CppAD will use :ref:`colpack<colpack_prefix-name>` to do the coloring.
Otherwise, it will use it's own coloring algorithm.

symmetric
=========
If this option is present, CppAD will use a symmetric
:ref:`coloring method<sparse_hessian@work@color_method>`
for computing Hessian sparsity patterns.
Otherwise, it will use a general coloring method.
The CppAD
:ref:`sparse_hessian<link_sparse_hessian-name>` test
is implemented for this option.

Correctness Results
*******************
One, but not both, of the following two output lines

| |tab| *package* _ *test* _ *optionlist* _ ``available`` = ``false``
| |tab| *package* _ *test* _ *optionlist* _ ``ok`` = *flag*

is generated for each correctness test where
*package* and *test* are as above,
*optionlist* are the options (in *option_list* )
separated by the underbar ``_`` character
(whereas they are separated by spaces in *option_list* ),
and *flag* is ``true`` or ``false`` .

Speed Results
*************
For each speed test, corresponds to three lines of the
following form are generated:

| |tab| *package* _ *test* _ *optionlist* _ ``ok`` = *flag*
| |tab| *test* _ ``size`` = [ *size_1* , ..., *size_n*  ]
| |tab| *package* _ *test* _ ``rate`` = [ *rate_1* , ..., *rate_n*  ]

The values *package* , *test* , *optionlist* ,
and *flag* are as in the correctness results above.
The values *size_1* , ..., *size_n* are the
size arguments used for the corresponding tests.
The values *rate_1* , ..., *rate_n* are the number of times
per second that the corresponding size problem executed.

n_color
=======
The :ref:`sparse_jacobian<link_sparse_jacobian-name>`
and :ref:`sparse_hessian<link_sparse_hessian-name>` tests has an extra output
line with the following form

   *package* _ ``sparse_`` *test* _ ``n_color`` = [ *n_color_1* , ..., *n_color_n*  ]

were *test* is ``jacobian`` (``hessian`` ).
The values *n_color_1* , ..., *n_color_n* are the number of
colors used for each sparse Jacobian (Hessian) calculation; see
*n_color* for
:ref:`sparse_jac<sparse_jac@n_color>` and *n_sweep* for
:ref:`sparse_hessian<sparse_hessian@n_sweep>` .
{xrst_toc_hidden
   speed/src/link.xrst
}
Link Routines
*************
Each :ref:`speed_main@package`
defines it's own version of one of the
:ref:`link_routines-name` listed below.
Each of these routines links this main program to the corresponding test:

.. csv-table::
   :widths: auto

   link_det_lu,:ref:`link_det_lu-title`
   link_det_minor,:ref:`link_det_minor-title`
   link_mat_mul,:ref:`link_mat_mul-title`
   link_ode,:ref:`link_ode-title`
   link_poly,:ref:`link_poly-title`
   link_sparse_hessian,:ref:`link_sparse_hessian-title`
   link_sparse_jacobian,:ref:`link_sparse_jacobian-title`

{xrst_end speed_main}
-----------------------------------------------------------------------------
*/
// external routines

# define CPPAD_DECLARE_TIME(name)                         \
   extern bool available_##name(void);                   \
   extern bool correct_##name(bool is_package_double);   \
   extern double time_##name(double time_min, size_t size)

CPPAD_DECLARE_TIME(det_lu);
CPPAD_DECLARE_TIME(det_minor);
CPPAD_DECLARE_TIME(mat_mul);
CPPAD_DECLARE_TIME(ode);
CPPAD_DECLARE_TIME(poly);
CPPAD_DECLARE_TIME(sparse_hessian);
CPPAD_DECLARE_TIME(sparse_jacobian);
//
// some routines defined in src subdirectory
extern void info_sparse_jacobian(
   CppAD::vector<size_t>& size_vec    ,
   CppAD::vector<size_t>& n_color_vec
);
extern void info_sparse_hessian(size_t size, size_t& n_color);
//
// --------------------------------------------------------------------------
std::map<std::string, bool> global_option;
//
// If return value for the previous CppAD speed test was false, this is zero.
// Otherwise it is value returned by CppAD::thread_alloc::inuse for the
// current thread at end of the test.
size_t global_cppad_thread_alloc_inuse = 0;
//
// This is the value of seed in the main program command line.
// It can be used by the sparse matrix routines to reset the random generator
// so same sparsity pattern is obtained during source generation and usage.
size_t global_seed= 0;
//
// --------------------------------------------------------------------------
namespace {
   using std::cout;
   using std::cerr;
   using std::endl;
   const char* option_list[] = {
      "memory",
      "onetape",
      "optimize",
      "atomic",
      "hes2jac",
      "subgraph",
      "boolsparsity",
      "revsparsity",
      "subsparsity",
      "colpack",
      "symmetric",
      "val_graph"
   };
   size_t num_option = sizeof(option_list) / sizeof( option_list[0] );
   // ----------------------------------------------------------------
   // not available test message
   void not_available_message(const char* test_name)
   {  cout << AD_PACKAGE << ": " << test_name;
      cout << " is not available with " << endl;
      int max_len = 0;
      for(size_t i = 0; i < num_option; i++)
      {  int len = int( std::strlen( option_list[i] ) );
         max_len = std::max( max_len, len);
      }
      for(size_t i = 0; i < num_option; i++)
      {  std::string option = option_list[i];
         if( global_option[option] )
            cout << std::setw(max_len + 1) << option << " = true\n";
         else
            cout << std::setw(max_len + 1) << option << " = false\n";
      }
   }
   // ------------------------------------------------------
   // output vector in form readable by octave or matlab
   // convert size_t to int to avoid warning by MS compiler
   void output(const CppAD::vector<size_t> &v)
   {  size_t i= 0, n = v.size();
      cout << "[ ";
      while(i < n)
      {  cout << int(v[i++]);
         if( i < n )
            cout << ", ";
      }
      cout << " ]";
   }

   // ----------------------------------------------------------------
   // function that runs one correctness case
   static size_t Run_ok_count    = 0;
   static size_t Run_error_count = 0;
   bool run_correct(
      bool available_case(void) ,
      bool correct_case(bool)   ,
      const char *case_name     )
   {  bool available = available_case();
      bool ok        = true;
      if( available )
      {
# ifdef CPPAD_DOUBLE_SPEED
         bool is_package_double = true;
# else
         bool is_package_double = false;
# endif
         ok = correct_case(is_package_double);
      }
      cout << AD_PACKAGE << "_" << case_name;
      for(size_t i = 0; i < num_option; i++)
      {  std::string option = option_list[i];
         if( global_option[option]  )
            cout << "_" << option;
      }
      if( ! available )
      {  cout << "_available = false" << endl;
         return ok;
      }
      cout << "_correct = ";
      if( ok )
      {  cout << " true" << endl;
         Run_ok_count++;
      }
      else
      {  cout << " false" << endl;
         Run_error_count++;
      }
      return ok;
   }
   // ----------------------------------------------------------------
   // function that runs one speed case
   void run_speed(
      double time_case(double time_min,  size_t size)  ,
      const CppAD::vector<size_t>&        size_vec     ,
      const std::string&                  case_name    )
   {  double time_min = 1.;
      cout << case_name << "_size = ";
      output(size_vec);
      cout << endl;
      cout << AD_PACKAGE << "_" << case_name << "_rate = ";
      cout << std::fixed;
      for(size_t i = 0; i < size_vec.size(); i++)
      {  if( i == 0 )
            cout << "[ ";
         else
            cout << ", ";
         cout << std::flush;
         size_t size = size_vec[i];
         double time = time_case(time_min, size);
         double rate = 1. / time;
         if( rate >= 1000 )
            cout << std::setprecision(0) << rate;
         else if( rate >= 10 )
            cout << std::setprecision(2) << rate;
         else
            cout << std::setprecision(4) << rate;
      }
      cout << " ]" << endl;
      //
      return;
   }
}

// main program that runs all the tests
int main(int argc, char *argv[])
{  bool ok = true;
   enum test_enum {
      test_correct,
      test_speed,
      test_det_lu,
      test_det_minor,
      test_mat_mul,
      test_ode,
      test_poly,
      test_sparse_hessian,
      test_sparse_jacobian,
      test_error
   };
   struct test_struct {
      const char       *name;
      const test_enum  index;
   };
   const test_struct test_list[]= {
      { "correct",            test_correct         },
      { "speed",              test_speed           },
      { "det_lu",             test_det_lu          },
      { "det_minor",          test_det_minor       },
      { "mat_mul",            test_mat_mul         },
      { "ode",                test_ode             },
      { "poly",               test_poly            },
      { "sparse_hessian",     test_sparse_hessian  },
      { "sparse_jacobian",    test_sparse_jacobian }
   };
   const size_t n_test  = sizeof(test_list) / sizeof(test_list[0]);
   //
   test_enum match = test_error;
   int    iseed = 0;
   bool   error = argc < 3;
   if( ! error )
   {  for(size_t i = 0; i < n_test; i++)
         if( strcmp(test_list[i].name, argv[1]) == 0 )
            match = test_list[i].index;
      error = match == test_error;
      for(size_t i = 0; *(argv[2] + i) != '\0'; ++i)
      {  error |= *(argv[2] + i) < '0';
         error |= '9' < *(argv[2] + i);
      }
      iseed = std::atoi( argv[2] );
      error |= iseed < 0;
      for(size_t i = 0; i < num_option; i++)
         global_option[ option_list[i] ] = false;
      for(size_t i = 3; i < size_t(argc); i++)
      {  bool found = false;
         for(size_t j = 0; j < num_option; j++)
         {  if( strcmp(argv[i], option_list[j]) == 0 )
            {  global_option[ option_list[j] ] = true;
               found = true;
            }
         }
         error |= ! found;
      }
   }
   if( error )
   {  cout << "usage: ./speed_"
             << AD_PACKAGE << " test seed option_list" << endl;
      cout << "test choices:";
      for(size_t i = 0; i < n_test; i++)
      {  if( i % 5 == 0 )
            std::cout << "\n\t";
         else
            std::cout << ", ";
         cout << test_list[i].name;
      }
      cout << "\n\nseed: is a positive integer used as a random seed.";
      cout << "\n\noption_list: zero or more of the following:";
      for(size_t i = 0; i < num_option; i++)
      {  if( i % 5 == 0 )
            std::cout << "\n\t";
         else
            std::cout << ", ";
         cout << option_list[i];
      }
      cout << endl << endl;
      return 1;
   }
   if( global_option["memory"] )
      CppAD::thread_alloc::hold_memory(true);

   // initialize the random number simulator
   // (may be re-initialized by sparse jacobain test)
   global_seed = size_t(iseed);
   CppAD::uniform_01(global_seed);

   // arguments needed for speed tests
   size_t n_size   = 5;
   CppAD::vector<size_t> size_det_lu(n_size);
   CppAD::vector<size_t> size_det_minor(n_size);
   CppAD::vector<size_t> size_mat_mul(n_size);
   CppAD::vector<size_t> size_ode(n_size);
   CppAD::vector<size_t> size_poly(n_size);
   CppAD::vector<size_t> size_sparse_hessian(n_size);
   CppAD::vector<size_t> size_sparse_jacobian(n_size);
   for(size_t i = 0; i < n_size; i++)
   {  size_det_minor[i]   =  i + 4;
      size_det_lu[i]      = 20 * i + 1;
      size_mat_mul[i]     = 20 * i + 1;
      size_ode[i]         = 20 * i + 1;
      size_poly[i]        = 20 * i + 1;
      size_sparse_hessian[i]  = 250 * (i + 1) * (i + 1);
      size_sparse_jacobian[i] = 250 * (i + 1) * (i + 1);
   }
   switch(match)
   {
      // run all the correctness tests
      case test_correct:
      ok &= run_correct( available_det_lu, correct_det_lu, "det_lu"
      );
      ok &= run_correct(
         available_det_minor, correct_det_minor, "det_minor"
      );
      ok &= run_correct(
         available_mat_mul, correct_mat_mul, "mat_mul"
      );
      ok &= run_correct(
         available_ode, correct_ode, "ode"
      );
      ok &= run_correct( available_poly, correct_poly, "poly"
      );
      ok &= run_correct(
         available_sparse_hessian,
         correct_sparse_hessian,
         "sparse_hessian"
      );
      ok &= run_correct(
         available_sparse_jacobian,
         correct_sparse_jacobian,
         "sparse_jacobian"
      );
      // summarize results
      assert( ok || (Run_error_count > 0) );
      if( ok )
      {  cout << "All " << int(Run_ok_count)
                 << " correctness tests passed." << endl;
      }
      else
      {  cout << int(Run_error_count)
                 << " correctness tests failed." << endl;
      }
      break;
      // ---------------------------------------------------------
      // run all the speed tests
      case test_speed:
      if( available_det_lu() ) run_speed(
         time_det_lu,          size_det_lu,          "det_lu"
      );
      if( available_det_minor() ) run_speed(
         time_det_minor,       size_det_minor,       "det_minor"
      );
      if( available_mat_mul() ) run_speed(
         time_mat_mul,           size_mat_mul,       "mat_mul"
      );
      if( available_ode() ) run_speed(
         time_ode,             size_ode,             "ode"
      );
      if( available_poly() ) run_speed(
         time_poly,            size_poly,            "poly"
      );
      if( available_sparse_hessian() ) run_speed(
         time_sparse_hessian,  size_sparse_hessian,  "sparse_hessian"
      );
      if( available_sparse_jacobian() ) run_speed(
      time_sparse_jacobian, size_sparse_jacobian, "sparse_jacobian"
      );
      ok = true;
      break;
      // ---------------------------------------------------------

      case test_det_lu:
      if( ! available_det_lu() )
      {  not_available_message( argv[1] );
         exit(1);
      }
      ok &= run_correct(
         available_det_lu, correct_det_lu, "det_lu")
      ;
      run_speed(time_det_lu,    size_det_lu,     "det_lu");
      break;
      // ---------------------------------------------------------

      case test_det_minor:
      if( ! available_det_minor() )
      {  not_available_message( argv[1] );
         exit(1);
      }
      ok &= run_correct(
         available_det_minor, correct_det_minor, "det_minor"
      );
      run_speed(time_det_minor, size_det_minor, "det_minor");
      break;
      // ---------------------------------------------------------

      case test_mat_mul:
      if( ! available_mat_mul() )
      {  not_available_message( argv[1] );
         exit(1);
      }
      ok &= run_correct(
         available_mat_mul, correct_mat_mul, "mat_mul"
      );
      run_speed(time_mat_mul, size_mat_mul, "mat_mul");
      break;
      // ---------------------------------------------------------

      case test_ode:
      if( ! available_ode() )
      {  not_available_message( argv[1] );
         exit(1);
      }
      ok &= run_correct(
         available_ode, correct_ode, "ode"
      );
      run_speed(time_ode,      size_ode,      "ode");
      break;
      // ---------------------------------------------------------

      case test_poly:
      if( ! available_poly() )
      {  not_available_message( argv[1] );
         exit(1);
      }
      ok &= run_correct(
         available_poly, correct_poly, "poly"
      );
      run_speed(time_poly,      size_poly,      "poly");
      break;
      // ---------------------------------------------------------

      case test_sparse_hessian:
      if( ! available_sparse_hessian() )
      {  not_available_message( argv[1] );
         exit(1);
      }
      ok &= run_correct(
         available_sparse_hessian,
         correct_sparse_hessian,
         "sparse_hessian"
      );
      run_speed(
         time_sparse_hessian, size_sparse_hessian,  "sparse_hessian"
      );
      cout << AD_PACKAGE << "_sparse_hessian_n_color = ";
      for(size_t i = 0; i < size_sparse_hessian.size(); i++)
      {  if( i == 0 )
            cout << "[ ";
         else
            cout << ", ";
         size_t n_color;
         info_sparse_hessian(size_sparse_hessian[i], n_color);
         cout << n_color;
      }
      cout << " ]" << endl;
      break;
      // ---------------------------------------------------------

      case test_sparse_jacobian:
      if( ! available_sparse_jacobian() )
      {  not_available_message( argv[1] );
         exit(1);
      }
      ok &= run_correct(
         available_sparse_jacobian,
         correct_sparse_jacobian,
         "sparse_jacobian"
      );
      run_speed(
         time_sparse_jacobian, size_sparse_jacobian, "sparse_jacobian"
      );
      {  // output values of n_color
         CppAD::vector<size_t> size_vec, n_color_vec;
         info_sparse_jacobian(size_vec, n_color_vec);
         assert( size_sparse_jacobian.size() == size_vec.size() );
         cout << AD_PACKAGE << "_sparse_jacobian_n_color = ";
         for(size_t i = 0; i < size_vec.size(); i++)
         {  assert( size_vec[i] == size_sparse_jacobian[i] );
            if( i == 0 )
               cout << "[ ";
            else
               cout << ", ";
            cout << n_color_vec[i];
         }
      }
      cout << " ]" << endl;
      break;
      // ---------------------------------------------------------

      default:
      assert(0);
   }
# ifndef NDEBUG
   // return memory for vectors that are still in scope
   size_det_lu.clear();
   size_det_minor.clear();
   size_mat_mul.clear();
   size_ode.clear();
   size_poly.clear();
   size_sparse_hessian.clear();
   size_sparse_jacobian.clear();
   // check for memory leak
   if( CppAD::thread_alloc::free_all() )
   {  Run_ok_count++;
      cout << "No memory leak detected" << endl;
   }
   else
   {  ok = false;
      Run_error_count++;
      cout << "Memory leak detected" << endl;
   }
# endif
   if( global_cppad_thread_alloc_inuse != 0 )
   {  cout << "memory allocated at end of last cppad speed test = ";
      cout << global_cppad_thread_alloc_inuse << std::endl;
   }
   if( ! ok )
   {  cout << "speed main: Error\n";
      exit(1);
   }
   std::cout << "speed main: OK\n";
   return 0;
}