File: atomic_sparsity.cpp

package info (click to toggle)
cppad 2026.00.00.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,584 kB
  • sloc: cpp: 112,960; sh: 6,146; ansic: 179; python: 71; sed: 12; makefile: 10
file content (385 lines) | stat: -rw-r--r-- 10,959 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-24 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
Atomic function
g( x ) = [ x_2, x_0 * x_1 ]
\] $$
*/
# include <cppad/cppad.hpp>
namespace {   // isolate items below to this file
using   CppAD::vector;                          // vector
typedef vector< std::set<size_t> > set_vector;  // atomic_sparsity
//
// a utility to compute the union of two sets.
using CppAD::set_union;
//
class atomic_set_sparsity : public CppAD::atomic_base<double> {
public:
   // constructor
   atomic_set_sparsity(const std::string& name) :
   // this example only uses set sparsity patterns
   CppAD::atomic_base<double>(name, set_sparsity_enum )
   { }
private:
   // forward
   virtual bool forward(
      size_t                    p ,
      size_t                    q ,
      const vector<bool>&      vx ,
      vector<bool>&            vy ,
      const vector<double>&    tx ,
      vector<double>&          ty
   )
   {
      size_t n = tx.size() / (q + 1);
# ifndef NDEBUG
      size_t m = ty.size() / (q + 1);
# endif
      assert( n == 3 );
      assert( m == 2 );

      // only order zero
      bool ok = q == 0;
      if( ! ok )
         return ok;

      // check for defining variable information
      if( vx.size() > 0 )
      {  ok   &= vx.size() == n;
         vy[0] = vx[2];
         vy[1] = vx[0] || vx[1];
      }

      // Order zero forward mode.
      // y[0] = x[2], y[1] = x[0] * x[1]
      if( p <= 0 )
      {  ty[0] = tx[2];
         ty[1] = tx[0] * tx[1];
      }
      return ok;
   }
   // for_sparse_jac
   virtual bool for_sparse_jac(
      size_t                          p ,
      const set_vector&               r ,
      set_vector&                     s ,
      const vector<double>&           x )
   {  // This function needed if using f.ForSparseJac
# ifndef NDEBUG
      size_t n = r.size();
      size_t m = s.size();
# endif
      assert( n == x.size() );
      assert( n == 3 );
      assert( m == 2 );

      // sparsity for S(x) = f'(x) * R  = [ 0,   0, 1 ] * R
      s[0] = r[2];
      // s[1] = union(r[0], r[1])
      s[1] = set_union(r[0], r[1]);
      //
      return true;
   }
   virtual bool rev_sparse_jac(
      size_t                                p  ,
      const set_vector&                     rt ,
      set_vector&                           st ,
      const vector<double>&                 x  )
   {  // This function needed if using RevSparseJac or optimize
# ifndef NDEBUG
      size_t n = st.size();
      size_t m = rt.size();
# endif
      assert( n == x.size() );
      assert( n == 3 );
      assert( m == 2 );

      //                                       [ 0, x1 ]
      // sparsity for S(x)^T = f'(x)^T * R^T = [ 0, x0 ] * R^T
      //                                       [ 1, 0  ]
      st[0] = rt[1];
      st[1] = rt[1];
      st[2] = rt[0];
      return true;
   }
   virtual bool for_sparse_hes(
      const vector<bool>&                   vx,
      const vector<bool>&                   r ,
      const vector<bool>&                   s ,
      set_vector&                           h ,
      const vector<double>&                 x )
   {
      size_t n = r.size();
# ifndef NDEBUG
      size_t m = s.size();
# endif
      assert( x.size() == n );
      assert( h.size() == n );
      assert( n == 3 );
      assert( m == 2 );

      // initialize h as empty
      for(size_t i = 0; i < n; i++)
         h[i].clear();

      // only f_1 has a non-zero hessian
      if( ! s[1] )
         return true;

      // only the cross term between x[0] and x[1] is non-zero
      if( ! ( r[0] && r[1] ) )
         return true;

      // set the possibly non-zero terms in the hessian
      h[0].insert(1);
      h[1].insert(0);

      return true;
   }
   virtual bool rev_sparse_hes(
      const vector<bool>&                   vx,
      const vector<bool>&                   s ,
      vector<bool>&                         t ,
      size_t                                p ,
      const set_vector&                     r ,
      const set_vector&                     u ,
      set_vector&                           v ,
      const vector<double>&                 x )
   {  // This function needed if using RevSparseHes
# ifndef NDEBUG
      size_t m = s.size();
      size_t n = t.size();
# endif
      assert( x.size() == n );
      assert( r.size() == n );
      assert( u.size() == m );
      assert( v.size() == n );
      assert( n == 3 );
      assert( m == 2 );

      // sparsity for T(x) = S(x) * f'(x) = S(x) * [  0,  0,  1 ]
      //                                           [ x1, x0,  0 ]
      t[0] = s[1];
      t[1] = s[1];
      t[2] = s[0];

      // V(x) = f'(x)^T * g''(y) * f'(x) * R  +  g'(y) * f''(x) * R
      // U(x) = g''(y) * f'(x) * R
      // S(x) = g'(y)

      //                                      [ 0, x1 ]
      // sparsity for W(x) = f'(x)^T * U(x) = [ 0, x0 ] * U(x)
      //                                      [ 1, 0  ]
      v[0] = u[1];
      v[1] = u[1];
      v[2] = u[0];
      //
      //                                      [ 0, 1, 0 ]
      // sparsity for V(x) = W(x) + S_1 (x) * [ 1, 0, 0 ] * R
      //                                      [ 0, 0, 0 ]
      if( s[1] )
      {  // v[0] = union( v[0], r[1] )
         v[0] = set_union(v[0], r[1]);
         // v[1] = union( v[1], r[0] )
         v[1] = set_union(v[1], r[0]);
      }
      return true;
   }
}; // End of atomic_set_sparsity class


// f(u) = g( u_0 + u_1 , u_0 + u_1 , u_2 )
//      = [ u_2 , (u_0 + u_1)^2 ]
bool test_one(void)
{  bool ok = true;
   using CppAD::AD;
   using CppAD::NearEqual;
   double eps = 10. * std::numeric_limits<double>::epsilon();
   // Create the atomic get_started object
   atomic_set_sparsity afun("atomic_set_sparsity");
   size_t n = 3;
   size_t m = 2;
   vector< AD<double> > au(n), ay(m);
   for(size_t j = 0; j < n; j++)
      au[j] = double(j + 1);

   // declare independent variables and start tape recording
   CppAD::Independent(au);

   // ax
   vector< AD<double> > ax(n);
   ax[0] = au[0] + au[1];
   ax[1] = au[0] + au[1];
   ax[2] = au[2];

   // call atomic function
   afun(ax, ay);

   // create f: u -> y and stop tape recording
   CppAD::ADFun<double> f(au, ay);

   // check function value
   ok &= NearEqual(ay[0] , au[2],  eps, eps);
   ok &= NearEqual(ay[1] , (au[0] + au[1]) * (au[0] + au[1]),  eps, eps);

   // correct Jacobian result
   set_vector check_s(m);
   check_s[0].insert(2);
   check_s[1].insert(0);
   check_s[1].insert(1);
   // compute and test forward mode
   {  set_vector r(n), s(m);
      for(size_t i = 0; i < n; i++)
         r[i].insert(i);
      s = f.ForSparseJac(n, r);
      for(size_t i = 0; i < m; i++)
         ok &= s[i] == check_s[i];
   }
   // compute and test reverse mode
   {  set_vector r(m), s(m);
      for(size_t i = 0; i < m; i++)
         r[i].insert(i);
      s = f.RevSparseJac(m, r);
      for(size_t i = 0; i < m; i++)
         ok &= s[i] == check_s[i];
   }
   // correct Hessian result for w_0 * f_0 (u) + w_1 * f_1(u)
   set_vector check_h(n);
   check_h[0].insert(0);
   check_h[0].insert(1);
   check_h[1].insert(0);
   check_h[1].insert(1);
   // compute and test forward mode
   {  set_vector r(1), s(1), h(n);
      for(size_t i = 0; i < m; i++)
         s[0].insert(i);
      for(size_t j = 0; j < n; j++)
         r[0].insert(j);
      h = f.ForSparseHes(r, s);
      for(size_t i = 0; i < n; i++)
         ok &= h[i] == check_h[i];
   }
   // compute and test reverse mode
   {  set_vector s(1), h(n);
      for(size_t i = 0; i < m; i++)
         s[0].insert(i);
      h = f.RevSparseHes(n, s);
      for(size_t i = 0; i < n; i++)
         ok &= h[i] == check_h[i];
   }
   return ok;
}

// f(u) = g( u_0 + u_1 , u_1 + u_2 , u_2 + u_0 )
//      = [ u_2 + u_0 , (u_0 + u_1)*(u_1 + u_2) ]
bool test_two(void)
{  bool ok = true;
   using CppAD::AD;
   using CppAD::NearEqual;
   double eps = 10. * std::numeric_limits<double>::epsilon();
   // Create the atomic get_started object
   atomic_set_sparsity afun("atomic_set_sparsity");
   size_t n = 3;
   size_t m = 2;
   vector< AD<double> > au(n), ay(m);
   for(size_t j = 0; j < n; j++)
      au[j] = double(j + 1);

   // declare independent variables and start tape recording
   CppAD::Independent(au);

   // ax
   vector< AD<double> > ax(n);
   ax[0] = au[0] + au[1];
   ax[1] = au[1] + au[2];
   ax[2] = au[2] + au[0];

   // call atomic function
   afun(ax, ay);

   // create f: u -> y and stop tape recording
   CppAD::ADFun<double> f(au, ay);

   // check function value
   ok &= NearEqual(ay[0] , au[2] + au[0],  eps, eps);
   ok &= NearEqual(ay[1] , (au[0] + au[1]) * (au[1] + au[2]),  eps, eps);

   // correct Jacobian result
   set_vector check_s(m);
   check_s[0].insert(2);
   check_s[0].insert(0);
   check_s[1].insert(0);
   check_s[1].insert(1);
   check_s[1].insert(2);
   // compute and test forward mode
   {  set_vector r(n), s(m);
      for(size_t i = 0; i < n; i++)
         r[i].insert(i);
      s = f.ForSparseJac(n, r);
      for(size_t i = 0; i < m; i++)
         ok &= s[i] == check_s[i];
   }
   // compute and test reverse mode
   {  set_vector r(m), s(m);
      for(size_t i = 0; i < m; i++)
         r[i].insert(i);
      s = f.RevSparseJac(m, r);
      for(size_t i = 0; i < m; i++)
         ok &= s[i] == check_s[i];
   }
   // ----------------------------------------------------------------------
   // correct Hessian result for f_0 (u)
   set_vector check_h(n), s(1);
   s[0].insert(0);
   // compute and test forward mode
   {  set_vector r(1), h(n);
      for(size_t j = 0; j < n; j++)
         r[0].insert(j);
      h = f.ForSparseHes(r, s);
      for(size_t i = 0; i < n; i++)
         ok &= h[i] == check_h[i];
   }
   // compute and test reverse mode
   {  set_vector h(n);
      h = f.RevSparseHes(n, s);
      for(size_t i = 0; i < n; i++)
         ok &= h[i] == check_h[i];
   }
   // ----------------------------------------------------------------------
   // correct Hessian result for f_1 (u)
   s[0].clear();
   s[0].insert(1);
   check_h[0].insert(1);
   check_h[0].insert(2);
   check_h[1].insert(0);
   check_h[1].insert(1);
   check_h[1].insert(2);
   check_h[2].insert(0);
   check_h[2].insert(1);
   // compute and test forward mode
   {  set_vector r(1), h(n);
      for(size_t j = 0; j < n; j++)
         r[0].insert(j);
      h = f.ForSparseHes(r, s);
      for(size_t i = 0; i < n; i++)
         ok &= h[i] == check_h[i];
   }
   // compute and test reverse mode
   {  set_vector h(n);
      h = f.RevSparseHes(n, s);
      for(size_t i = 0; i < n; i++)
         ok &= h[i] == check_h[i];
   }
   return ok;
}

}  // End empty namespace

bool atomic_sparsity(void)
{  bool ok = true;
   ok     &= test_one();
   ok     &= test_two();
   return ok;
}