File: base2ad.cpp

package info (click to toggle)
cppad 2026.00.00.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,584 kB
  • sloc: cpp: 112,960; sh: 6,146; ansic: 179; python: 71; sed: 12; makefile: 10
file content (218 lines) | stat: -rw-r--r-- 6,090 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------

/*
@begin atomic_two_base2ad.cpp@@

$section base2ad with Atomic Operations: Example and Test$$

$head Source Code$$
$srcthisfile%0%// BEGIN C++%// END C++%1%$$

$end
*/
// BEGIN C++
# include <cppad/cppad.hpp>
namespace {          // isolate items below to this file
//
// abbreviations
using CppAD::AD;
using CppAD::vector;
//
class atomic_base2ad : public CppAD::atomic_base<double> {
//
public:
   // constructor (could use const char* for name)
   atomic_base2ad(const std::string& name) :
   // this example does not use any sparsity patterns
   CppAD::atomic_base<double>(name)
   { }
private:
   // ----------------------------------------------------------------------
   // forward mode
   // ----------------------------------------------------------------------
   template <class Scalar>
   bool template_forward(
      size_t                    p ,
      size_t                    q ,
      const vector<bool>&      vx ,
              vector<bool>&      vy ,
      const vector<Scalar>&    tx ,
              vector<Scalar>&    ty
   )
   {
# ifndef NDEBUG
      size_t n = tx.size() / (q + 1);
      size_t m = ty.size() / (q + 1);
# endif
      assert( n == 1 );
      assert( m == 1 );

      // return flag
      bool ok = q == 0;
      if( ! ok )
         return ok;

      // check for defining variable information
      // This case must always be implemented
      if( vx.size() > 0 )
         vy[0] = vx[0];

      // Order zero forward mode.
      // This case must always be implemented
      // y^0 = f( x^0 ) = 1 / x^0
      Scalar f = 1. / tx[0];
      if( p <= 0 )
         ty[0] = f;
      return ok;
   }
   // forward mode routines called by ADFun<Base> objects
   virtual bool forward(
      size_t                    p ,
      size_t                    q ,
      const vector<bool>&      vx ,
              vector<bool>&      vy ,
      const vector<double>&    tx ,
              vector<double>&    ty
   )
   {  return template_forward(p, q, vx, vy, tx, ty);
   }
   // forward mode routines called by ADFun< AD<Base> , Base> objects
   virtual bool forward(
      size_t                          p ,
      size_t                          q ,
      const vector<bool>&            vx ,
              vector<bool>&            vy ,
      const vector< AD<double> >&    atx ,
              vector< AD<double> >&    aty
   )
   {  return template_forward(p, q, vx, vy, atx, aty);
   }
   // ----------------------------------------------------------------------
   // reverse mode
   // ----------------------------------------------------------------------
   template <class Scalar>
   bool template_reverse(
      size_t                    q ,
      const vector<Scalar>&    tx ,
      const vector<Scalar>&    ty ,
              vector<Scalar>&    px ,
      const vector<Scalar>&    py
   )
   {
# ifndef NDEBUG
      size_t n = tx.size() / (q + 1);
      size_t m = ty.size() / (q + 1);
# endif
      assert( n == 1 );
      assert( m == 1 );

      // return flag
      bool ok = q == 0;
      if( ! ok )
         return ok;

      // Order zero reverse mode.
      // y^0 = f( x^0 ) = 1 / x^0
      // y^1 = f'( x^0 ) * x^1 = - x^1 / (x^0 * x^0)
      px[0] = - py[0] / ( tx[0] * tx[0] );
      return ok;
   }
   // reverse mode routines called by ADFun<Base> objects
   virtual bool reverse(
      size_t                    q ,
      const vector<double>&    tx ,
      const vector<double>&    ty ,
              vector<double>&    px ,
      const vector<double>&    py
   )
   {  return template_reverse(q, tx, ty, px, py);
   }
   // reverse mode routines called by ADFun<Base> objects
   virtual bool reverse(
      size_t                         q ,
      const vector< AD<double> >&    atx ,
      const vector< AD<double> >&    aty ,
              vector< AD<double> >&    apx ,
      const vector< AD<double> >&    apy
   )
   {  return template_reverse(q, atx, aty, apx, apy);
   }
}; // End of atomic_base2ad class
}  // End empty namespace

bool base2ad(void)
{  bool ok = true;
   using CppAD::NearEqual;
   double eps = 10. * CppAD::numeric_limits<double>::epsilon();
   //
   // Create the atomic base2ad object
   atomic_base2ad afun("atomic_base2ad");
   //
   // Create the function f(x)
   //
   size_t n  = 1;
   double  x0 = 0.5;
   vector< AD<double> > ax(n);
   ax[0]     = x0;

   // declare independent variables and start tape recording
   CppAD::Independent(ax);

   // range space vector
   size_t m = 1;
   vector< AD<double> > ay(m);

   // call atomic function and store base2ad(x) in au[0]
   vector< AD<double> > au(m);
   afun(ax, au);        // u = 1 / x

   // now use AD division to invert to invert the operation
   ay[0] = 1.0 / au[0]; // y = 1 / u = x

   // create f: x -> y and stop tape recording
   CppAD::ADFun<double> f;
   f.Dependent (ax, ay);  // f(x) = x

   // check function value
   double check = x0;
   ok &= NearEqual( Value(ay[0]) , check,  eps, eps);

   // check zero order forward mode
   size_t q;
   vector<double> x_q(n), y_q(m);
   q      = 0;
   x_q[0] = x0;
   y_q    = f.Forward(q, x_q);
   ok &= NearEqual(y_q[0] , check,  eps, eps);

   // check first order reverse
   vector<double> dw(n), w(m);
   w[0]  = 1.0;
   dw    = f.Reverse(q+1, w);
   check = 1.0;
   ok &= NearEqual(dw[0] , check,  eps, eps);

   // create af : x -> y
   CppAD::ADFun< AD<double> , double > af( f.base2ad() );

   // check zero order forward mode
   vector< AD<double> > ax_q(n), ay_q(m);
   q      = 0;
   ax_q[0] = x0;
   ay_q    = af.Forward(q, ax_q);
   check   = x0;
   ok &= NearEqual( Value(ay_q[0]) , check,  eps, eps);

   // check first order reverse
   vector< AD<double> > adw(n), aw(m);
   aw[0]  = 1.0;
   adw    = af.Reverse(q+1, aw);
   check = 1.0;
   ok &= NearEqual( Value(adw[0]) , check,  eps, eps);

   return ok;
}
// END C++