1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
@begin atomic_two_base2ad.cpp@@
$section base2ad with Atomic Operations: Example and Test$$
$head Source Code$$
$srcthisfile%0%// BEGIN C++%// END C++%1%$$
$end
*/
// BEGIN C++
# include <cppad/cppad.hpp>
namespace { // isolate items below to this file
//
// abbreviations
using CppAD::AD;
using CppAD::vector;
//
class atomic_base2ad : public CppAD::atomic_base<double> {
//
public:
// constructor (could use const char* for name)
atomic_base2ad(const std::string& name) :
// this example does not use any sparsity patterns
CppAD::atomic_base<double>(name)
{ }
private:
// ----------------------------------------------------------------------
// forward mode
// ----------------------------------------------------------------------
template <class Scalar>
bool template_forward(
size_t p ,
size_t q ,
const vector<bool>& vx ,
vector<bool>& vy ,
const vector<Scalar>& tx ,
vector<Scalar>& ty
)
{
# ifndef NDEBUG
size_t n = tx.size() / (q + 1);
size_t m = ty.size() / (q + 1);
# endif
assert( n == 1 );
assert( m == 1 );
// return flag
bool ok = q == 0;
if( ! ok )
return ok;
// check for defining variable information
// This case must always be implemented
if( vx.size() > 0 )
vy[0] = vx[0];
// Order zero forward mode.
// This case must always be implemented
// y^0 = f( x^0 ) = 1 / x^0
Scalar f = 1. / tx[0];
if( p <= 0 )
ty[0] = f;
return ok;
}
// forward mode routines called by ADFun<Base> objects
virtual bool forward(
size_t p ,
size_t q ,
const vector<bool>& vx ,
vector<bool>& vy ,
const vector<double>& tx ,
vector<double>& ty
)
{ return template_forward(p, q, vx, vy, tx, ty);
}
// forward mode routines called by ADFun< AD<Base> , Base> objects
virtual bool forward(
size_t p ,
size_t q ,
const vector<bool>& vx ,
vector<bool>& vy ,
const vector< AD<double> >& atx ,
vector< AD<double> >& aty
)
{ return template_forward(p, q, vx, vy, atx, aty);
}
// ----------------------------------------------------------------------
// reverse mode
// ----------------------------------------------------------------------
template <class Scalar>
bool template_reverse(
size_t q ,
const vector<Scalar>& tx ,
const vector<Scalar>& ty ,
vector<Scalar>& px ,
const vector<Scalar>& py
)
{
# ifndef NDEBUG
size_t n = tx.size() / (q + 1);
size_t m = ty.size() / (q + 1);
# endif
assert( n == 1 );
assert( m == 1 );
// return flag
bool ok = q == 0;
if( ! ok )
return ok;
// Order zero reverse mode.
// y^0 = f( x^0 ) = 1 / x^0
// y^1 = f'( x^0 ) * x^1 = - x^1 / (x^0 * x^0)
px[0] = - py[0] / ( tx[0] * tx[0] );
return ok;
}
// reverse mode routines called by ADFun<Base> objects
virtual bool reverse(
size_t q ,
const vector<double>& tx ,
const vector<double>& ty ,
vector<double>& px ,
const vector<double>& py
)
{ return template_reverse(q, tx, ty, px, py);
}
// reverse mode routines called by ADFun<Base> objects
virtual bool reverse(
size_t q ,
const vector< AD<double> >& atx ,
const vector< AD<double> >& aty ,
vector< AD<double> >& apx ,
const vector< AD<double> >& apy
)
{ return template_reverse(q, atx, aty, apx, apy);
}
}; // End of atomic_base2ad class
} // End empty namespace
bool base2ad(void)
{ bool ok = true;
using CppAD::NearEqual;
double eps = 10. * CppAD::numeric_limits<double>::epsilon();
//
// Create the atomic base2ad object
atomic_base2ad afun("atomic_base2ad");
//
// Create the function f(x)
//
size_t n = 1;
double x0 = 0.5;
vector< AD<double> > ax(n);
ax[0] = x0;
// declare independent variables and start tape recording
CppAD::Independent(ax);
// range space vector
size_t m = 1;
vector< AD<double> > ay(m);
// call atomic function and store base2ad(x) in au[0]
vector< AD<double> > au(m);
afun(ax, au); // u = 1 / x
// now use AD division to invert to invert the operation
ay[0] = 1.0 / au[0]; // y = 1 / u = x
// create f: x -> y and stop tape recording
CppAD::ADFun<double> f;
f.Dependent (ax, ay); // f(x) = x
// check function value
double check = x0;
ok &= NearEqual( Value(ay[0]) , check, eps, eps);
// check zero order forward mode
size_t q;
vector<double> x_q(n), y_q(m);
q = 0;
x_q[0] = x0;
y_q = f.Forward(q, x_q);
ok &= NearEqual(y_q[0] , check, eps, eps);
// check first order reverse
vector<double> dw(n), w(m);
w[0] = 1.0;
dw = f.Reverse(q+1, w);
check = 1.0;
ok &= NearEqual(dw[0] , check, eps, eps);
// create af : x -> y
CppAD::ADFun< AD<double> , double > af( f.base2ad() );
// check zero order forward mode
vector< AD<double> > ax_q(n), ay_q(m);
q = 0;
ax_q[0] = x0;
ay_q = af.Forward(q, ax_q);
check = x0;
ok &= NearEqual( Value(ay_q[0]) , check, eps, eps);
// check first order reverse
vector< AD<double> > adw(n), aw(m);
aw[0] = 1.0;
adw = af.Reverse(q+1, aw);
check = 1.0;
ok &= NearEqual( Value(adw[0]) , check, eps, eps);
return ok;
}
// END C++
|