1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-24 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
@begin atomic_two_set_sparsity.cpp@@
$spell
enum
$$
$section Atomic Sparsity with Set Patterns: Example and Test$$
$head function$$
For this example, the atomic function
$latex f : \B{R}^3 \rightarrow \B{R}^2$$ is defined by
$latex \[
f( x ) = \left( \begin{array}{c}
x_2 \\
x_0 * x_1
\end{array} \right)
\] $$
$head set_sparsity_enum$$
This example only uses set sparsity patterns.
$head Start Class Definition$$
$srccode%cpp% */
# include <cppad/cppad.hpp>
namespace { // isolate items below to this file
using CppAD::vector; // vector
typedef vector< std::set<size_t> > set_vector; // atomic_sparsity
//
// a utility to compute the union of two sets.
using CppAD::set_union;
//
class atomic_set_sparsity : public CppAD::atomic_base<double> {
/* %$$
$head Constructor $$
$srccode%cpp% */
public:
// constructor
atomic_set_sparsity(const std::string& name) :
// this example only uses set sparsity patterns
CppAD::atomic_base<double>(name, set_sparsity_enum )
{ }
private:
/* %$$
$head forward$$
$srccode%cpp% */
// forward
virtual bool forward(
size_t p ,
size_t q ,
const vector<bool>& vx ,
vector<bool>& vy ,
const vector<double>& tx ,
vector<double>& ty
)
{
size_t n = tx.size() / (q + 1);
# ifndef NDEBUG
size_t m = ty.size() / (q + 1);
# endif
assert( n == 3 );
assert( m == 2 );
// only order zero
bool ok = q == 0;
if( ! ok )
return ok;
// check for defining variable information
if( vx.size() > 0 )
{ ok &= vx.size() == n;
vy[0] = vx[2];
vy[1] = vx[0] || vx[1];
}
// Order zero forward mode.
// y[0] = x[2], y[1] = x[0] * x[1]
if( p <= 0 )
{ ty[0] = tx[2];
ty[1] = tx[0] * tx[1];
}
return ok;
}
/* %$$
$head for_sparse_jac$$
$srccode%cpp% */
// for_sparse_jac
virtual bool for_sparse_jac(
size_t p ,
const set_vector& r ,
set_vector& s ,
const vector<double>& x )
{ // This function needed if using f.ForSparseJac
# ifndef NDEBUG
size_t n = r.size();
size_t m = s.size();
# endif
assert( n == x.size() );
assert( n == 3 );
assert( m == 2 );
// sparsity for S(x) = f'(x) * R = [ 0, 0, 1 ] * R
s[0] = r[2];
// s[1] = union(r[0], r[1])
s[1] = set_union(r[0], r[1]);
//
return true;
}
/* %$$
$head rev_sparse_jac$$
$srccode%cpp% */
virtual bool rev_sparse_jac(
size_t p ,
const set_vector& rt ,
set_vector& st ,
const vector<double>& x )
{ // This function needed if using RevSparseJac or optimize
# ifndef NDEBUG
size_t n = st.size();
size_t m = rt.size();
# endif
assert( n == x.size() );
assert( n == 3 );
assert( m == 2 );
// [ 0, x1 ]
// sparsity for S(x)^T = f'(x)^T * R^T = [ 0, x0 ] * R^T
// [ 1, 0 ]
st[0] = rt[1];
st[1] = rt[1];
st[2] = rt[0];
return true;
}
/* %$$
$head for_sparse_hes$$
$srccode%cpp% */
virtual bool for_sparse_hes(
const vector<bool>& vx,
const vector<bool>& r ,
const vector<bool>& s ,
set_vector& h ,
const vector<double>& x )
{
size_t n = r.size();
# ifndef NDEBUG
size_t m = s.size();
# endif
assert( x.size() == n );
assert( h.size() == n );
assert( n == 3 );
assert( m == 2 );
// initialize h as empty
for(size_t i = 0; i < n; i++)
h[i].clear();
// only f_1 has a non-zero hessian
if( ! s[1] )
return true;
// only the cross term between x[0] and x[1] is non-zero
if( ! ( r[0] && r[1] ) )
return true;
// set the possibly non-zero terms in the hessian
h[0].insert(1);
h[1].insert(0);
return true;
}
/* %$$
$head rev_sparse_hes$$
$srccode%cpp% */
virtual bool rev_sparse_hes(
const vector<bool>& vx,
const vector<bool>& s ,
vector<bool>& t ,
size_t p ,
const set_vector& r ,
const set_vector& u ,
set_vector& v ,
const vector<double>& x )
{ // This function needed if using RevSparseHes
# ifndef NDEBUG
size_t m = s.size();
size_t n = t.size();
# endif
assert( x.size() == n );
assert( r.size() == n );
assert( u.size() == m );
assert( v.size() == n );
assert( n == 3 );
assert( m == 2 );
// sparsity for T(x) = S(x) * f'(x) = S(x) * [ 0, 0, 1 ]
// [ x1, x0, 0 ]
t[0] = s[1];
t[1] = s[1];
t[2] = s[0];
// V(x) = f'(x)^T * g''(y) * f'(x) * R + g'(y) * f''(x) * R
// U(x) = g''(y) * f'(x) * R
// S(x) = g'(y)
// [ 0, x1 ]
// sparsity for W(x) = f'(x)^T * U(x) = [ 0, x0 ] * U(x)
// [ 1, 0 ]
v[0] = u[1];
v[1] = u[1];
v[2] = u[0];
//
// [ 0, 1, 0 ]
// sparsity for V(x) = W(x) + S_1 (x) * [ 1, 0, 0 ] * R
// [ 0, 0, 0 ]
if( s[1] )
{ // v[0] = union( v[0], r[1] )
v[0] = set_union(v[0], r[1]);
// v[1] = union( v[1], r[0] )
v[1] = set_union(v[1], r[0]);
}
return true;
}
/* %$$
$head End Class Definition$$
$srccode%cpp% */
}; // End of atomic_set_sparsity class
} // End empty namespace
/* %$$
$head Test Atomic Function$$
$srccode%cpp% */
bool set_sparsity(void)
{ bool ok = true;
using CppAD::AD;
using CppAD::NearEqual;
double eps = 10. * std::numeric_limits<double>::epsilon();
/* %$$
$subhead Constructor$$
$srccode%cpp% */
// Create the atomic get_started object
atomic_set_sparsity afun("atomic_set_sparsity");
/* %$$
$subhead Recording$$
$srccode%cpp% */
size_t n = 3;
size_t m = 2;
vector< AD<double> > ax(n), ay(m);
for(size_t j = 0; j < n; j++)
ax[j] = double(j + 1);
// declare independent variables and start tape recording
CppAD::Independent(ax);
// call atomic function
afun(ax, ay);
// create f: x -> y and stop tape recording
CppAD::ADFun<double> f;
f.Dependent (ax, ay); // f(x) = x
// check function value
ok &= NearEqual(ay[0] , ax[2], eps, eps);
ok &= NearEqual(ay[1] , ax[0] * ax[1], eps, eps);
/* %$$
$subhead for_sparse_jac$$
$srccode%cpp% */
// correct Jacobian result
set_vector check_s(m);
check_s[0].insert(2);
check_s[1].insert(0);
check_s[1].insert(1);
// compute and test forward mode
{ set_vector r(n), s(m);
for(size_t i = 0; i < n; i++)
r[i].insert(i);
s = f.ForSparseJac(n, r);
for(size_t i = 0; i < m; i++)
ok &= s[i] == check_s[i];
}
/* %$$
$subhead rev_sparse_jac$$
$srccode%cpp% */
// compute and test reverse mode
{ set_vector r(m), s(m);
for(size_t i = 0; i < m; i++)
r[i].insert(i);
s = f.RevSparseJac(m, r);
for(size_t i = 0; i < m; i++)
ok &= s[i] == check_s[i];
}
/* %$$
$subhead for_sparse_hes$$
$srccode%cpp% */
// correct Hessian result
set_vector check_h(n);
check_h[0].insert(1);
check_h[1].insert(0);
// compute and test forward mode
{ set_vector r(1), s(1), h(n);
for(size_t i = 0; i < m; i++)
s[0].insert(i);
for(size_t j = 0; j < n; j++)
r[0].insert(j);
h = f.ForSparseHes(r, s);
for(size_t i = 0; i < n; i++)
ok &= h[i] == check_h[i];
}
/* %$$
$subhead rev_sparse_hes$$
Note the previous call to $code ForSparseJac$$ above
stored its results in $icode f$$.
$srccode%cpp% */
// compute and test reverse mode
{ set_vector s(1), h(n);
for(size_t i = 0; i < m; i++)
s[0].insert(i);
h = f.RevSparseHes(n, s);
for(size_t i = 0; i < n; i++)
ok &= h[i] == check_h[i];
}
/* %$$
$subhead Test Result$$
$srccode%cpp% */
return ok;
}
/* %$$
$end
*/
|