1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
@begin old_mat_mul.cpp@@
$spell
mul
$$
$section Old Matrix Multiply as a User Atomic Operation: Example and Test$$
$head Deprecated 2013-05-27$$
This example has been deprecated;
use $cref atomic_two_mat_mul.cpp$$ instead.
$children%
example/deprecated/old_mat_mul.hpp
%$$
$head Include File$$
This routine uses the include file old_mat_mul.hpp.
$srcthisfile%0%// BEGIN C++%// END C++%1%$$
$end
*/
// BEGIN C++
# include <cppad/cppad.hpp>
# include "old_mat_mul.hpp"
bool old_mat_mul(void)
{ bool ok = true;
using CppAD::AD;
// matrix sizes for this test
size_t nr_result = 2;
size_t n_middle = 2;
size_t nc_result = 2;
// declare the AD<double> vectors ax and ay and X
size_t n = nr_result * n_middle + n_middle * nc_result;
size_t m = nr_result * nc_result;
CppAD::vector< AD<double> > X(4), ax(n), ay(m);
size_t i, j;
for(j = 0; j < X.size(); j++)
X[j] = (j + 1);
// X is the vector of independent variables
CppAD::Independent(X);
// left matrix
ax[0] = X[0]; // left[0,0] = x[0] = 1
ax[1] = X[1]; // left[0,1] = x[1] = 2
ax[2] = 5.; // left[1,0] = 5
ax[3] = 6.; // left[1,1] = 6
// right matrix
ax[4] = X[2]; // right[0,0] = x[2] = 3
ax[5] = 7.; // right[0,1] = 7
ax[6] = X[3]; // right[1,0] = x[3] = 4
ax[7] = 8.; // right[1,1] = 8
/*
[ x0 , x1 ] * [ x2 , 7 ] = [ x0*x2 + x1*x3 , x0*7 + x1*8 ]
[ 5 , 6 ] [ x3 , 8 ] [ 5*x2 + 6*x3 , 5*7 + 6*8 ]
*/
// The call back routines need to know the dimensions of the matrices.
// Store information about the matrix multiply for this call to mat_mul.
call_info info;
info.nr_result = nr_result;
info.n_middle = n_middle;
info.nc_result = nc_result;
// info.vx gets set by forward during call to mat_mul below
assert( info.vx.size() == 0 );
size_t id = info_.size();
info_.push_back(info);
// user defined AD<double> version of matrix multiply
mat_mul(id, ax, ay);
//----------------------------------------------------------------------
// check AD<double> results
ok &= ay[0] == (1*3 + 2*4); ok &= Variable( ay[0] );
ok &= ay[1] == (1*7 + 2*8); ok &= Variable( ay[1] );
ok &= ay[2] == (5*3 + 6*4); ok &= Variable( ay[2] );
ok &= ay[3] == (5*7 + 6*8); ok &= Parameter( ay[3] );
//----------------------------------------------------------------------
// use mat_mul to define a function g : X -> ay
CppAD::ADFun<double> G;
G.Dependent(X, ay);
// g(x) = [ x0*x2 + x1*x3 , x0*7 + x1*8 , 5*x2 + 6*x3 , 5*7 + 6*8 ]^T
//----------------------------------------------------------------------
// Test zero order forward mode evaluation of g(x)
CppAD::vector<double> x( X.size() ), y(m);
for(j = 0; j < X.size() ; j++)
x[j] = double(j + 2);
y = G.Forward(0, x);
ok &= y[0] == x[0] * x[2] + x[1] * x[3];
ok &= y[1] == x[0] * 7. + x[1] * 8.;
ok &= y[2] == 5. * x[2] + 6. * x[3];
ok &= y[3] == 5. * 7. + 6. * 8.;
//----------------------------------------------------------------------
// Test first order forward mode evaluation of g'(x) * [1, 2, 3, 4]^T
// g'(x) = [ x2, x3, x0, x1 ]
// [ 7 , 8, 0, 0 ]
// [ 0 , 0, 5, 6 ]
// [ 0 , 0, 0, 0 ]
CppAD::vector<double> dx( X.size() ), dy(m);
for(j = 0; j < X.size() ; j++)
dx[j] = double(j + 1);
dy = G.Forward(1, dx);
ok &= dy[0] == 1. * x[2] + 2. * x[3] + 3. * x[0] + 4. * x[1];
ok &= dy[1] == 1. * 7. + 2. * 8. + 3. * 0. + 4. * 0.;
ok &= dy[2] == 1. * 0. + 2. * 0. + 3. * 5. + 4. * 6.;
ok &= dy[3] == 1. * 0. + 2. * 0. + 3. * 0. + 4. * 0.;
//----------------------------------------------------------------------
// Test second order forward mode
// g_0^2 (x) = [ 0, 0, 1, 0 ], g_0^2 (x) * [1] = [3]
// [ 0, 0, 0, 1 ] [2] [4]
// [ 1, 0, 0, 0 ] [3] [1]
// [ 0, 1, 0, 0 ] [4] [2]
CppAD::vector<double> ddx( X.size() ), ddy(m);
for(j = 0; j < X.size() ; j++)
ddx[j] = 0.;
ddy = G.Forward(2, ddx);
// [1, 2, 3, 4] * g_0^2 (x) * [1, 2, 3, 4]^T = 1*3 + 2*4 + 3*1 + 4*2
ok &= 2. * ddy[0] == 1. * 3. + 2. * 4. + 3. * 1. + 4. * 2.;
// for i > 0, [1, 2, 3, 4] * g_i^2 (x) * [1, 2, 3, 4]^T = 0
ok &= ddy[1] == 0.;
ok &= ddy[2] == 0.;
ok &= ddy[3] == 0.;
//----------------------------------------------------------------------
// Test second order reverse mode
CppAD::vector<double> w(m), dw(2 * X.size() );
for(i = 0; i < m; i++)
w[i] = 0.;
w[0] = 1.;
dw = G.Reverse(2, w);
// g_0'(x) = [ x2, x3, x0, x1 ]
ok &= dw[0*2 + 0] == x[2];
ok &= dw[1*2 + 0] == x[3];
ok &= dw[2*2 + 0] == x[0];
ok &= dw[3*2 + 0] == x[1];
// g_0'(x) * [1, 2, 3, 4] = 1 * x2 + 2 * x3 + 3 * x0 + 4 * x1
// g_0^2 (x) * [1, 2, 3, 4] = [3, 4, 1, 2]
ok &= dw[0*2 + 1] == 3.;
ok &= dw[1*2 + 1] == 4.;
ok &= dw[2*2 + 1] == 1.;
ok &= dw[3*2 + 1] == 2.;
//----------------------------------------------------------------------
// Test forward and reverse Jacobian sparsity pattern
/*
[ x0 , x1 ] * [ x2 , 7 ] = [ x0*x2 + x1*x3 , x0*7 + x1*8 ]
[ 5 , 6 ] [ x3 , 8 ] [ 5*x2 + 6*x3 , 5*7 + 6*8 ]
so the sparsity pattern should be
s[0] = {0, 1, 2, 3}
s[1] = {0, 1}
s[2] = {2, 3}
s[3] = {}
*/
CppAD::vector< std::set<size_t> > r( X.size() ), s(m);
for(j = 0; j < X.size() ; j++)
{ assert( r[j].empty() );
r[j].insert(j);
}
s = G.ForSparseJac( X.size() , r);
for(j = 0; j < X.size() ; j++)
{ // s[0] = {0, 1, 2, 3}
ok &= s[0].find(j) != s[0].end();
// s[1] = {0, 1}
if( j == 0 || j == 1 )
ok &= s[1].find(j) != s[1].end();
else
ok &= s[1].find(j) == s[1].end();
// s[2] = {2, 3}
if( j == 2 || j == 3 )
ok &= s[2].find(j) != s[2].end();
else
ok &= s[2].find(j) == s[2].end();
}
// s[3] == {}
ok &= s[3].empty();
//----------------------------------------------------------------------
// Test reverse Jacobian sparsity pattern
/*
[ x0 , x1 ] * [ x2 , 7 ] = [ x0*x2 + x1*x3 , x0*7 + x1*8 ]
[ 5 , 6 ] [ x3 , 8 ] [ 5*x2 + 6*x3 , 5*7 + 6*8 ]
so the sparsity pattern should be
r[0] = {0, 1, 2, 3}
r[1] = {0, 1}
r[2] = {2, 3}
r[3] = {}
*/
for(i = 0; i < m; i++)
{ s[i].clear();
s[i].insert(i);
}
r = G.RevSparseJac(m, s);
for(j = 0; j < X.size() ; j++)
{ // r[0] = {0, 1, 2, 3}
ok &= r[0].find(j) != r[0].end();
// r[1] = {0, 1}
if( j == 0 || j == 1 )
ok &= r[1].find(j) != r[1].end();
else
ok &= r[1].find(j) == r[1].end();
// r[2] = {2, 3}
if( j == 2 || j == 3 )
ok &= r[2].find(j) != r[2].end();
else
ok &= r[2].find(j) == r[2].end();
}
// r[3] == {}
ok &= r[3].empty();
//----------------------------------------------------------------------
/* Test reverse Hessian sparsity pattern
g_0^2 (x) = [ 0, 0, 1, 0 ] and for i > 0, g_i^2 = 0
[ 0, 0, 0, 1 ]
[ 1, 0, 0, 0 ]
[ 0, 1, 0, 0 ]
so for the sparsity pattern for the first component of g is
h[0] = {2}
h[1] = {3}
h[2] = {0}
h[3] = {1}
*/
CppAD::vector< std::set<size_t> > h( X.size() ), t(1);
t[0].clear();
t[0].insert(0);
h = G.RevSparseHes(X.size() , t);
size_t check[] = {2, 3, 0, 1};
for(j = 0; j < X.size() ; j++)
{ // h[j] = { check[j] }
for(i = 0; i < n; i++)
{ if( i == check[j] )
ok &= h[j].find(i) != h[j].end();
else
ok &= h[j].find(i) == h[j].end();
}
}
t[0].clear();
for( j = 1; j < X.size(); j++)
t[0].insert(j);
h = G.RevSparseHes(X.size() , t);
for(j = 0; j < X.size() ; j++)
{ // h[j] = { }
for(i = 0; i < X.size(); i++)
ok &= h[j].find(i) == h[j].end();
}
// --------------------------------------------------------------------
// Free temporary work space. (If there are future calls to
// old_mat_mul they would create new temporary work space.)
CppAD::user_atomic<double>::clear();
info_.clear();
return ok;
}
// END C++
|