1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
@begin old_reciprocal.cpp@@
$section Old Atomic Operation Reciprocal: Example and Test$$
$head Deprecated 2013-05-27$$
This example has been deprecated;
see $cref atomic_two_reciprocal.cpp$$ instead.
$head Theory$$
The example below defines the atomic function
$latex f : \B{R}^n \rightarrow \B{R}^m$$ where
$latex n = 1$$, $latex m = 1$$, and $latex f(x) = 1 / x$$.
$srcthisfile%0%// BEGIN C++%// END C++%1%$$
$end
*/
// BEGIN C++
# include <cppad/cppad.hpp>
namespace { // Begin empty namespace
using CppAD::vector;
// ----------------------------------------------------------------------
// a utility to compute the union of two sets.
using CppAD::set_union;
// ----------------------------------------------------------------------
// forward mode routine called by CppAD
bool reciprocal_forward(
size_t id ,
size_t k ,
size_t n ,
size_t m ,
const vector<bool>& vx ,
vector<bool>& vy ,
const vector<double>& tx ,
vector<double>& ty
)
{ assert( id == 0 );
assert( n == 1 );
assert( m == 1 );
assert( k == 0 || vx.size() == 0 );
bool ok = false;
double f, fp, fpp;
// Must always define the case k = 0.
// Do not need case k if not using f.Forward(q, xp) for q >= k.
switch(k)
{ case 0:
// this case must be implemented
if( vx.size() > 0 )
vy[0] = vx[0];
// y^0 = f( x^0 ) = 1 / x^0
ty[0] = 1. / tx[0];
ok = true;
break;
case 1:
// needed if first order forward mode is used
assert( vx.size() == 0 );
// y^1 = f'( x^0 ) x^1
f = ty[0];
fp = - f / tx[0];
ty[1] = fp * tx[1];
ok = true;
break;
case 2:
// needed if second order forward mode is used
assert( vx.size() == 0 );
// Y''(t) = X'(t)^\R{T} f''[X(t)] X'(t) + f'[X(t)] X''(t)
// 2 y^2 = x^1 * f''( x^0 ) x^1 + 2 f'( x^0 ) x^2
f = ty[0];
fp = - f / tx[0];
fpp = - 2.0 * fp / tx[0];
ty[2] = tx[1] * fpp * tx[1] / 2.0 + fp * tx[2];
ok = true;
break;
}
return ok;
}
// ----------------------------------------------------------------------
// reverse mode routine called by CppAD
bool reciprocal_reverse(
size_t id ,
size_t k ,
size_t n ,
size_t m ,
const vector<double>& tx ,
const vector<double>& ty ,
vector<double>& px ,
const vector<double>& py
)
{ // Do not need case k if not using f.Reverse(k+1, w).
assert( id == 0 );
assert( n == 1 );
assert( m == 1 );
bool ok = false;
double f, fp, fpp, fppp;
switch(k)
{ case 0:
// needed if first order reverse mode is used
// reverse: F^0 ( tx ) = y^0 = f( x^0 )
f = ty[0];
fp = - f / tx[0];
px[0] = py[0] * fp;;
ok = true;
break;
case 1:
// needed if second order reverse mode is used
// reverse: F^1 ( tx ) = y^1 = f'( x^0 ) x^1
f = ty[0];
fp = - f / tx[0];
fpp = - 2.0 * fp / tx[0];
px[1] = py[1] * fp;
px[0] = py[1] * fpp * tx[1];
// reverse: F^0 ( tx ) = y^0 = f( x^0 );
px[0] += py[0] * fp;
ok = true;
break;
case 2:
// needed if third order reverse mode is used
// reverse: F^2 ( tx ) = y^2 =
// = x^1 * f''( x^0 ) x^1 / 2 + f'( x^0 ) x^2
f = ty[0];
fp = - f / tx[0];
fpp = - 2.0 * fp / tx[0];
fppp = - 3.0 * fpp / tx[0];
px[2] = py[2] * fp;
px[1] = py[2] * fpp * tx[1];
px[0] = py[2] * tx[1] * fppp * tx[1] / 2.0 + fpp * tx[2];
// reverse: F^1 ( tx ) = y^1 = f'( x^0 ) x^1
px[1] += py[1] * fp;
px[0] += py[1] * fpp * tx[1];
// reverse: F^0 ( tx ) = y^0 = f( x^0 );
px[0] += py[0] * fp;
ok = true;
break;
}
return ok;
}
// ----------------------------------------------------------------------
// forward Jacobian sparsity routine called by CppAD
bool reciprocal_for_jac_sparse(
size_t id ,
size_t n ,
size_t m ,
size_t p ,
const vector< std::set<size_t> >& r ,
vector< std::set<size_t> >& s )
{ // Can just return false if not using f.ForSparseJac
assert( id == 0 );
assert( n == 1 );
assert( m == 1 );
// sparsity for S(x) = f'(x) * R is same as sparsity for R
s[0] = r[0];
return true;
}
// ----------------------------------------------------------------------
// reverse Jacobian sparsity routine called by CppAD
bool reciprocal_rev_jac_sparse(
size_t id ,
size_t n ,
size_t m ,
size_t p ,
vector< std::set<size_t> >& r ,
const vector< std::set<size_t> >& s )
{ // Can just return false if not using RevSparseJac.
assert( id == 0 );
assert( n == 1 );
assert( m == 1 );
// sparsity for R(x) = S * f'(x) is same as sparsity for S
for(size_t q = 0; q < p; q++)
r[q] = s[q];
return true;
}
// ----------------------------------------------------------------------
// reverse Hessian sparsity routine called by CppAD
bool reciprocal_rev_hes_sparse(
size_t id ,
size_t n ,
size_t m ,
size_t p ,
const vector< std::set<size_t> >& r ,
const vector<bool>& s ,
vector<bool>& t ,
const vector< std::set<size_t> >& u ,
vector< std::set<size_t> >& v )
{ // Can just return false if not use RevSparseHes.
assert( id == 0 );
assert( n == 1 );
assert( m == 1 );
// sparsity for T(x) = S(x) * f'(x) is same as sparsity for S
t[0] = s[0];
// V(x) = [ f'(x)^T * g''(y) * f'(x) + g'(y) * f''(x) ] * R
// U(x) = g''(y) * f'(x) * R
// S(x) = g'(y)
// back propagate the sparsity for U because derivative of
// reciprocal may be non-zero
v[0] = u[0];
// convert forward Jacobian sparsity to Hessian sparsity
// because second derivative of reciprocal may be non-zero
if( s[0] )
v[0] = set_union(v[0], r[0] );
return true;
}
// ---------------------------------------------------------------------
// Declare the AD<double> routine reciprocal(id, ax, ay)
CPPAD_USER_ATOMIC(
reciprocal ,
CppAD::vector ,
double ,
reciprocal_forward ,
reciprocal_reverse ,
reciprocal_for_jac_sparse ,
reciprocal_rev_jac_sparse ,
reciprocal_rev_hes_sparse
)
} // End empty namespace
bool old_reciprocal(void)
{ bool ok = true;
using CppAD::AD;
using CppAD::NearEqual;
double eps = 10. * CppAD::numeric_limits<double>::epsilon();
// --------------------------------------------------------------------
// Create the function f(x)
//
// domain space vector
size_t n = 1;
double x0 = 0.5;
vector< AD<double> > ax(n);
ax[0] = x0;
// declare independent variables and start tape recording
CppAD::Independent(ax);
// range space vector
size_t m = 1;
vector< AD<double> > ay(m);
// call atomic function and store reciprocal(x) in au[0]
vector< AD<double> > au(m);
size_t id = 0; // not used
reciprocal(id, ax, au); // u = 1 / x
// call atomic function and store reciprocal(u) in ay[0]
reciprocal(id, au, ay); // y = 1 / u = x
// create f: x -> y and stop tape recording
CppAD::ADFun<double> f;
f.Dependent (ax, ay); // f(x) = x
// --------------------------------------------------------------------
// Check forward mode results
//
// check function value
double check = x0;
ok &= NearEqual( Value(ay[0]) , check, eps, eps);
// check zero order forward mode
size_t q;
vector<double> x_q(n), y_q(m);
q = 0;
x_q[0] = x0;
y_q = f.Forward(q, x_q);
ok &= NearEqual(y_q[0] , check, eps, eps);
// check first order forward mode
q = 1;
x_q[0] = 1;
y_q = f.Forward(q, x_q);
check = 1.;
ok &= NearEqual(y_q[0] , check, eps, eps);
// check second order forward mode
q = 2;
x_q[0] = 0;
y_q = f.Forward(q, x_q);
check = 0.;
ok &= NearEqual(y_q[0] , check, eps, eps);
// --------------------------------------------------------------------
// Check reverse mode results
//
// third order reverse mode
q = 3;
vector<double> w(m), dw(n * q);
w[0] = 1.;
dw = f.Reverse(q, w);
check = 1.;
ok &= NearEqual(dw[0] , check, eps, eps);
check = 0.;
ok &= NearEqual(dw[1] , check, eps, eps);
ok &= NearEqual(dw[2] , check, eps, eps);
// --------------------------------------------------------------------
// forward mode sparstiy pattern
size_t p = n;
CppAD::vectorBool r1(n * p), s1(m * p);
r1[0] = true; // compute sparsity pattern for x[0]
s1 = f.ForSparseJac(p, r1);
ok &= s1[0] == true; // f[0] depends on x[0]
// --------------------------------------------------------------------
// reverse mode sparstiy pattern
q = m;
CppAD::vectorBool s2(q * m), r2(q * n);
s2[0] = true; // compute sparsity pattern for f[0]
r2 = f.RevSparseJac(q, s2);
ok &= r2[0] == true; // f[0] depends on x[0]
// --------------------------------------------------------------------
// Hessian sparsity (using previous ForSparseJac call)
CppAD::vectorBool s3(m), h(p * n);
s3[0] = true; // compute sparsity pattern for f[0]
h = f.RevSparseHes(p, s3);
ok &= h[0] == true; // second partial of f[0] w.r.t. x[0] may be non-zero
// -----------------------------------------------------------------
// Free all temporary work space associated with atomic_one objects.
// (If there are future calls to atomic functions, they will
// create new temporary work space.)
CppAD::user_atomic<double>::clear();
return ok;
}
// END C++
|