1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-24 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
@begin old_usead_1.cpp@@
$spell
checkpoint
var
$$
$section Using AD to Compute Atomic Function Derivatives$$
$head Deprecated 2013-05-27$$
This example has been deprecated because it is easier to use the
$cref/checkpoint/chkpoint_one/$$ class instead.
$head Purpose$$
Consider the case where an inner function is used repeatedly in the
definition of an outer function.
In this case, it may reduce the number of variables
$cref/size_var/fun_property/size_var/$$,
and hence the required memory.
$head Simple Case$$
This example is the same as old_reciprocal.cpp, except that it
uses AD to compute the
derivatives needed by an atomic function.
This is a simple example of an inner function, and hence not really
useful for the purpose above;
see old_usead_2.cpp for a more complete example.
$srcthisfile%0%// BEGIN C++%// END C++%1%$$
$end
*/
// BEGIN C++
# include <cppad/cppad.hpp>
namespace { // Begin empty namespace
using CppAD::AD;
using CppAD::ADFun;
using CppAD::vector;
// ----------------------------------------------------------------------
// function that computes reciprocal
ADFun<double>* r_ptr_;
void create_r(void)
{ vector< AD<double> > ax(1), ay(1);
ax[0] = 1;
CppAD::Independent(ax);
ay[0] = 1.0 / ax[0];
r_ptr_ = new ADFun<double>(ax, ay);
}
void destroy_r(void)
{ delete r_ptr_;
r_ptr_ = nullptr;
}
// ----------------------------------------------------------------------
// forward mode routine called by CppAD
bool reciprocal_forward(
size_t id ,
size_t k ,
size_t n ,
size_t m ,
const vector<bool>& vx ,
vector<bool>& vy ,
const vector<double>& tx ,
vector<double>& ty
)
{ assert( id == 0 );
assert( n == 1 );
assert( m == 1 );
assert( k == 0 || vx.size() == 0 );
bool ok = true;
vector<double> x_q(1), y_q(1);
// check for special case
if( vx.size() > 0 )
vy[0] = vx[0];
// make sure r_ has proper lower order Taylor coefficients stored
// then compute ty[k]
for(size_t q = 0; q <= k; q++)
{ x_q[0] = tx[q];
y_q = r_ptr_->Forward(q, x_q);
if( q == k )
ty[k] = y_q[0];
assert( q == k || ty[q] == y_q[0] );
}
return ok;
}
// ----------------------------------------------------------------------
// reverse mode routine called by CppAD
bool reciprocal_reverse(
size_t id ,
size_t k ,
size_t n ,
size_t m ,
const vector<double>& tx ,
const vector<double>& ty ,
vector<double>& px ,
const vector<double>& py
)
{ assert( id == 0 );
assert( n == 1 );
assert( m == 1 );
bool ok = true;
vector<double> x_q(1), w(k+1), dw(k+1);
// make sure r_ has proper forward mode coefficients
size_t q;
for(q = 0; q <= k; q++)
{ x_q[0] = tx[q];
# ifdef NDEBUG
r_ptr_->Forward(q, x_q);
# else
vector<double> y_q(1);
y_q = r_ptr_->Forward(q, x_q);
assert( ty[q] == y_q[0] );
# endif
}
for(q = 0; q <=k; q++)
w[q] = py[q];
dw = r_ptr_->Reverse(k+1, w);
for(q = 0; q <=k; q++)
px[q] = dw[q];
return ok;
}
// ----------------------------------------------------------------------
// forward Jacobian sparsity routine called by CppAD
bool reciprocal_for_jac_sparse(
size_t id ,
size_t n ,
size_t m ,
size_t p ,
const vector< std::set<size_t> >& r ,
vector< std::set<size_t> >& s )
{ assert( id == 0 );
assert( n == 1 );
assert( m == 1 );
bool ok = true;
vector< std::set<size_t> > R(1), S(1);
R[0] = r[0];
S = r_ptr_->ForSparseJac(p, R);
s[0] = S[0];
return ok;
}
// ----------------------------------------------------------------------
// reverse Jacobian sparsity routine called by CppAD
bool reciprocal_rev_jac_sparse(
size_t id ,
size_t n ,
size_t m ,
size_t p ,
vector< std::set<size_t> >& r ,
const vector< std::set<size_t> >& s )
{
assert( id == 0 );
assert( n == 1 );
assert( m == 1 );
bool ok = true;
vector< std::set<size_t> > R(p), S(p);
size_t q;
for(q = 0; q < p; q++)
S[q] = s[q];
R = r_ptr_->RevSparseJac(p, S);
for(q = 0; q < p; q++)
r[q] = R[q];
return ok;
}
// ----------------------------------------------------------------------
// reverse Hessian sparsity routine called by CppAD
bool reciprocal_rev_hes_sparse(
size_t id ,
size_t n ,
size_t m ,
size_t p ,
const vector< std::set<size_t> >& r ,
const vector<bool>& s ,
vector<bool>& t ,
const vector< std::set<size_t> >& u ,
vector< std::set<size_t> >& v )
{ // Can just return false if not use RevSparseHes.
assert( id == 0 );
assert( n == 1 );
assert( m == 1 );
bool ok = true;
// compute sparsity pattern for T(x) = S(x) * f'(x)
vector<bool> T(1), S(1);
S[0] = s[0];
T = r_ptr_->RevSparseJac(1, S);
t[0] = T[0];
// compute sparsity pattern for A(x) = U(x)^T * f'(x)
vector<bool> Ut(p), A(p);
size_t q;
for(q = 0; q < p; q++)
Ut[q] = false;
std::set<size_t>::const_iterator itr;
for(itr = u[0].begin(); itr != u[0].end(); itr++)
Ut[*itr] = true;
A = r_ptr_-> RevSparseJac(p, Ut);
// compute sparsity pattern for H(x) = R^T * (S * F)''(x)
vector<bool> H(p), R(n);
for(q = 0; q < p; q++)
R[q] = false;
for(itr = r[0].begin(); itr != r[0].end(); itr++)
R[*itr] = true;
r_ptr_->ForSparseJac(p, R);
H = r_ptr_->RevSparseHes(p, S);
// compute sparsity pattern for V(x) = A(x)^T + H(x)^T
v[0].clear();
for(q = 0; q < p; q++)
if( A[q] || H[q] )
v[0].insert(q);
return ok;
}
// ---------------------------------------------------------------------
// Declare the AD<double> routine reciprocal(id, ax, ay)
CPPAD_USER_ATOMIC(
reciprocal ,
CppAD::vector ,
double ,
reciprocal_forward ,
reciprocal_reverse ,
reciprocal_for_jac_sparse ,
reciprocal_rev_jac_sparse ,
reciprocal_rev_hes_sparse
)
} // End empty namespace
bool old_usead_1(void)
{ bool ok = true;
using CppAD::NearEqual;
double eps = 10. * CppAD::numeric_limits<double>::epsilon();
// --------------------------------------------------------------------
// Create the ADFun<double> r_
create_r();
// --------------------------------------------------------------------
// Create the function f(x)
//
// domain space vector
size_t n = 1;
double x0 = 0.5;
vector< AD<double> > ax(n);
ax[0] = x0;
// declare independent variables and start tape recording
CppAD::Independent(ax);
// range space vector
size_t m = 1;
vector< AD<double> > ay(m);
// call atomic function and store reciprocal(x) in au[0]
vector< AD<double> > au(m);
size_t id = 0; // not used
reciprocal(id, ax, au); // u = 1 / x
// call atomic function and store reciprocal(u) in ay[0]
reciprocal(id, au, ay); // y = 1 / u = x
// create f: x -> y and stop tape recording
ADFun<double> f;
f.Dependent(ax, ay); // f(x) = x
// --------------------------------------------------------------------
// Check function value results
//
// check function value
double check = x0;
ok &= NearEqual( Value(ay[0]) , check, eps, eps);
// check zero order forward mode
size_t q;
vector<double> x_q(n), y_q(m);
q = 0;
x_q[0] = x0;
y_q = f.Forward(q, x_q);
ok &= NearEqual(y_q[0] , check, eps, eps);
// check first order forward mode
q = 1;
x_q[0] = 1;
y_q = f.Forward(q, x_q);
check = 1.;
ok &= NearEqual(y_q[0] , check, eps, eps);
// check second order forward mode
q = 2;
x_q[0] = 0;
y_q = f.Forward(q, x_q);
check = 0.;
ok &= NearEqual(y_q[0] , check, eps, eps);
// --------------------------------------------------------------------
// Check reverse mode results
//
// third order reverse mode
q = 3;
vector<double> w(m), dw(n * q);
w[0] = 1.;
dw = f.Reverse(q, w);
check = 1.;
ok &= NearEqual(dw[0] , check, eps, eps);
check = 0.;
ok &= NearEqual(dw[1] , check, eps, eps);
ok &= NearEqual(dw[2] , check, eps, eps);
// --------------------------------------------------------------------
// forward mode sparstiy pattern
size_t p = n;
CppAD::vectorBool r1(n * p), s1(m * p);
r1[0] = true; // compute sparsity pattern for x[0]
s1 = f.ForSparseJac(p, r1);
ok &= s1[0] == true; // f[0] depends on x[0]
// --------------------------------------------------------------------
// reverse mode sparstiy pattern
q = m;
CppAD::vectorBool s2(q * m), r2(q * n);
s2[0] = true; // compute sparsity pattern for f[0]
r2 = f.RevSparseJac(q, s2);
ok &= r2[0] == true; // f[0] depends on x[0]
// --------------------------------------------------------------------
// Hessian sparsity (using previous ForSparseJac call)
CppAD::vectorBool s3(m), h(p * n);
s3[0] = true; // compute sparsity pattern for f[0]
h = f.RevSparseJac(p, s3);
ok &= h[0] == true; // second partial of f[0] w.r.t. x[0] may be non-zero
// -----------------------------------------------------------------
// Free all memory associated with the object r_ptr
destroy_r();
// -----------------------------------------------------------------
// Free all temporary work space associated with atomic_one objects.
// (If there are future calls to atomic functions, they will
// create new temporary work space.)
CppAD::user_atomic<double>::clear();
return ok;
}
// END C++
|