File: abs_normal.cpp

package info (click to toggle)
cppad 2026.00.00.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,584 kB
  • sloc: cpp: 112,960; sh: 6,146; ansic: 179; python: 71; sed: 12; makefile: 10
file content (109 lines) | stat: -rw-r--r-- 2,948 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
# include <cppad/cppad.hpp>

namespace { // BEGIN_EMPTY_NAMESPACE
// join
CPPAD_TESTVECTOR(double) join(
   const CPPAD_TESTVECTOR(double)& x ,
   const CPPAD_TESTVECTOR(double)& u )
{  size_t n = x.size();
   size_t s = u.size();
   CPPAD_TESTVECTOR(double) xu(n + s);
   for(size_t j = 0; j < n; j++)
      xu[j] = x[j];
   for(size_t j = 0; j < s; j++)
      xu[n + j] = u[j];
   return xu;
}
// test_pow
bool test_pow(void)
{  bool ok = true;
   //
   using CppAD::AD;
   using CppAD::ADFun;
   //
   typedef CPPAD_TESTVECTOR(double)       d_vector;
   typedef CPPAD_TESTVECTOR( AD<double> ) ad_vector;
   //
   double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
   //
   size_t n = 2; // size of x
   size_t m = 1; // size of y
   size_t s = 1; // number of absolute value terms
   //
   // record the function f(x)
   ad_vector ad_x(n), ad_y(m);
   for(size_t j = 0; j < n; j++)
      ad_x[j] = double(j + 1);
   Independent( ad_x );
   //
   // for this example, we the function is
   // f(x) = pow( |x_0|, x_1) + pow( |x_0| , 2) + pow(2, |x_0|)
   AD<double> abs_x0 = abs( ad_x[0] );
   AD<double> pow_vv = pow( abs_x0 , ad_x[1] );
   AD<double> pow_vp = pow( abs_x0 , 2.0 );
   AD<double> pow_pv = pow( 2.0 , abs_x0 );
   ad_y[0] = pow_vv + pow_vp + pow_pv;
   ADFun<double> f(ad_x, ad_y);

   // create its abs_normal representation in g, a
   ADFun<double> g, a;
   f.abs_normal_fun(g, a);

   // check dimension of domain and range space for g
   ok &= g.Domain() == n + s;
   ok &= g.Range()  == m + s;

   // check dimension of domain and range space for a
   ok &= a.Domain() == n;
   ok &= a.Range()  == s;

   // --------------------------------------------------------------------
   // Choose a point x_hat
   d_vector x_hat(n);
   x_hat[0] = -2.0;
   x_hat[1] = 2.0;

   // value of a_hat = a(x_hat)
   d_vector a_hat = a.Forward(0, x_hat);

   // (x_hat, a_hat)
   d_vector xu_hat = join(x_hat, a_hat);

   // value of g[ x_hat, a_hat ]
   d_vector g_hat = g.Forward(0, xu_hat);

   // Jacobian of g[ x_hat, a_hat ]
   d_vector g_jac = g.Jacobian(xu_hat);

   // value of delta_x
   d_vector delta_x(n);
   delta_x[0] =  4.0;
   delta_x[1] =  1.0;

   // value of x
   d_vector x(n);
   for(size_t j = 0; j < n; j++)
      x[j] = x_hat[j] + delta_x[j];

   // value of f(x)
   d_vector y = f.Forward(0, x);

   // check
   double check = std::pow( std::fabs(x[0]) , x[1]);
   check       += std::pow( std::fabs(x[0]) , 2.0 );
   check       += std::pow( 2.0, std::fabs(x[0]) );
   ok          &= CppAD::NearEqual(y[0], check, eps99, eps99);

   return ok;
}
} // END_EMPTY_NAMESPACE

bool abs_normal(void)
{  bool ok = true;
   ok     &= test_pow();
   return ok;
}