1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
Two old Add examples now used just for valiadation testing
*/
# include <cppad/cppad.hpp>
namespace { // BEGIN empty namespace
bool AddTestOne(void)
{ bool ok = true;
using namespace CppAD;
// independent variable vector, indices, values, and declaration
CPPAD_TESTVECTOR(AD<double>) U(2);
size_t s = 0;
size_t t = 1;
U[s] = 3.;
U[t] = 2.;
Independent(U);
// dependent variable vector and indices
CPPAD_TESTVECTOR(AD<double>) Z(3);
size_t x = 0;
size_t y = 1;
size_t z = 2;
// dependent variable values
Z[x] = U[s] + U[t]; // AD<double> + AD<double>
Z[y] = Z[x] + 1.; // AD<double> + double
Z[z] = 1. + Z[y]; // double + AD<double>
// create f: U -> Z and vectors used for derivative calculations
ADFun<double> f(U, Z);
CPPAD_TESTVECTOR(double) v( f.Domain() );
CPPAD_TESTVECTOR(double) w( f.Range() );
// check function values
ok &= ( Z[x] == 3. + 2. );
ok &= ( Z[y] == 3. + 2. + 1. );
ok &= ( Z[z] == 1. + 3. + 2. + 1. );
// forward computation of partials w.r.t. s
v[s] = 1.;
v[t] = 0.;
w = f.Forward(1, v);
ok &= ( w[x] == 1. ); // dx/ds
ok &= ( w[y] == 1. ); // dy/ds
ok &= ( w[z] == 1. ); // dz/ds
// reverse computation of second partials of z
CPPAD_TESTVECTOR(double) r( f.Domain() * 2 );
w[x] = 0.;
w[y] = 0.;
w[z] = 1.;
r = f.Reverse(2, w);
ok &= ( r[2 * s + 1] == 0. ); // d^2 z / (ds ds)
ok &= ( r[2 * t + 1] == 0. ); // d^2 z / (ds dt)
return ok;
}
bool AddTestTwo(void)
{ bool ok = true;
using namespace CppAD;
double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
// independent variable vector
double u0 = .5;
CPPAD_TESTVECTOR(AD<double>) U(1);
U[0] = u0;
Independent(U);
AD<double> a = U[0] + 1.; // AD<double> + double
AD<double> b = a + 2; // AD<double> + int
AD<double> c = 3. + b; // double + AD<double>
AD<double> d = 4 + c; // int + AD<double>
// dependent variable vector
CPPAD_TESTVECTOR(AD<double>) Z(1);
Z[0] = d + U[0]; // AD<double> + AD<double>
// create f: U -> Z and vectors used for derivative calculations
ADFun<double> f(U, Z);
CPPAD_TESTVECTOR(double) v(1);
CPPAD_TESTVECTOR(double) w(1);
// check value
ok &= NearEqual(Z[0] , 2 * u0 + 10, eps99 , eps99);
// forward computation of partials w.r.t. u
size_t j;
size_t p = 5;
double jfac = 1.;
double value = 2.;
v[0] = 1.;
for(j = 1; j < p; j++)
{ jfac *= double(j);
w = f.Forward(j, v);
ok &= NearEqual(w[0], value/jfac, eps99, eps99); // d^jz/du^j
v[0] = 0.;
value = 0.;
}
// reverse computation of partials of Taylor coefficients
CPPAD_TESTVECTOR(double) r(p);
w[0] = 1.;
r = f.Reverse(p, w);
jfac = 1.;
value = 2.;
for(j = 0; j < p; j++)
{ ok &= NearEqual(r[j], value/jfac, eps99, eps99); // d^jz/du^j
jfac *= double(j + 1);
value = 0.;
}
return ok;
}
} // END empty namespace
bool Add(void)
{ bool ok = true;
ok &= AddTestOne();
ok &= AddTestTwo();
return ok;
}
|