File: add_eq.cpp

package info (click to toggle)
cppad 2026.00.00.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,584 kB
  • sloc: cpp: 112,960; sh: 6,146; ansic: 179; python: 71; sed: 12; makefile: 10
file content (132 lines) | stat: -rw-r--r-- 3,334 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------

/*
Two old example now used just for valiadation testing
*/
# include <cppad/cppad.hpp>

namespace { // BEGIN empty namespace

bool AddEqOne(void)
{  bool ok = true;

   using namespace CppAD;


   // independent variable vector, indices, values, and declaration
   CPPAD_TESTVECTOR(AD<double>) U(2);
   size_t s = 0;
   size_t t = 1;
   U[s]     = 3.;
   U[t]     = 2.;
   Independent(U);

   // dependent variable vector and indices
   CPPAD_TESTVECTOR(AD<double>) Z(2);
   size_t x = 0;
   size_t y = 1;

   // dependent variable values
   Z[x]  = 4.;
   Z[y]  = U[t];
   Z[x] += U[s];  // parameter += variable
   Z[x] += U[t];  // variable  += variable
   Z[y] += .5;    // variable  += double
   // use .5 because it is represented exactly in binary and
   // because it makes sure that += does not slice the double to an int

   // create f: U -> Z and vectors used for derivative calculations
   ADFun<double> f(U, Z);
   CPPAD_TESTVECTOR(double) v( f.Domain() );
   CPPAD_TESTVECTOR(double) w( f.Range() );

   // check function values
   ok &= ( Z[x] == 4. + 3. + 2. );
   ok &= ( Z[y] == 2. + .5 );

   // forward computation of partials w.r.t. s
   v[s] = 1.;
   v[t] = 0.;
   w    = f.Forward(1, v);
   ok &= ( w[x] == 1. );  // dx/ds
   ok &= ( w[y] == 0. );  // dy/ds

   // reverse computation of second partials of x
   CPPAD_TESTVECTOR(double) r( f.Domain() * 2 );
   w[x] = 1.;
   w[y] = 0.;
   r    = f.Reverse(2, w);
   ok &= ( r[2 * s + 1] == 0. );
   ok &= ( r[2 * t + 1] == 0. );

   return ok;
}

bool AddEqTwo(void)
{  bool ok = true;
   using namespace CppAD;
   double eps99 = 99.0 * std::numeric_limits<double>::epsilon();

   // independent variable vector
   double u0 = .5;
   CPPAD_TESTVECTOR(AD<double>) U(1);
   U[0]      = u0;
   Independent(U);

   // dependent variable vector
   CPPAD_TESTVECTOR(AD<double>) Z(1);
   Z[0] = U[0];       // initial value
   Z[0] += 2;         // AD<double> += int
   Z[0] += 4.;        // AD<double> += double
   Z[0] += U[0];      // AD<double> += AD<double>

   // create f: U -> Z and vectors used for derivative calculations
   ADFun<double> f(U, Z);
   CPPAD_TESTVECTOR(double) v(1);
   CPPAD_TESTVECTOR(double) w(1);

   // check value
   ok &= NearEqual(Z[0] , u0+2+4+u0,  eps99 , eps99);

   // forward computation of partials w.r.t. u
   size_t j;
   size_t p     = 5;
   double jfac  = 1.;
   double value = 2.;
   v[0]         = 1.;
   for(j = 1; j < p; j++)
   {  jfac *= double(j);
      w     = f.Forward(j, v);
      ok &= NearEqual(w[0], value/jfac, eps99, eps99); // d^jz/du^j
      v[0]  = 0.;
      value = 0.;
   }

   // reverse computation of partials of Taylor coefficients
   CPPAD_TESTVECTOR(double) r(p);
   w[0]  = 1.;
   r     = f.Reverse(p, w);
   jfac  = 1.;
   value = 2.;
   for(j = 0; j < p; j++)
   {  ok &= NearEqual(r[j], value/jfac, eps99, eps99); // d^jz/du^j
      jfac *= double(j + 1);
      value = 0.;
   }

   return ok;
}

} // END empty namespace

bool AddEq(void)
{  bool ok = true;
   ok     &= AddEqOne();
   ok     &= AddEqTwo();
   return ok;
}

// END PROGRAM