File: atomic_three.cpp

package info (click to toggle)
cppad 2026.00.00.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,584 kB
  • sloc: cpp: 112,960; sh: 6,146; ansic: 179; python: 71; sed: 12; makefile: 10
file content (564 lines) | stat: -rw-r--r-- 17,100 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-24 Bradley M. Bell
// ----------------------------------------------------------------------------

/*
g_0 (x) = x_0 * x_0
g_1 (x) = x_0 * x_1
g_2 (x) = x_1 * x_2
g_3 (x) = x_2 * x_2

*/
# include <cppad/cppad.hpp>  // CppAD include file
namespace {                  // start empty namespace
using CppAD::vector;         // abbreviate CppAD::vector using vector

// ============================================================================
// Testing dynamic parameters in atomic_three functions.
// ============================================================================
class dynamic_optimize : public CppAD::atomic_three<double> {
public:
   // can use const char* name when calling this constructor
   dynamic_optimize(const std::string& name) : // can have more arguments
   CppAD::atomic_three<double>(name)          // inform base class of name
   { }

private:
   // calculate type_y
   virtual bool for_type(
      const vector<double>&               parameter_x ,
      const vector<CppAD::ad_type_enum>&  type_x      ,
      vector<CppAD::ad_type_enum>&        type_y      )
   {  assert( parameter_x.size() == type_x.size() );
      bool ok = type_x.size() == 3; // n
      ok     &= type_y.size() == 4; // m
      if( ! ok )
         return false;
      type_y[0] = type_x[0];
      type_y[1] = std::max( type_x[0], type_x[1] );
      type_y[2] = std::max( type_x[1], type_x[2] );
      type_y[3] = type_x[2];
      return true;
   }
   // calculate depend_x
   virtual bool rev_depend(
      const vector<double>&               parameter_x ,
      const vector<CppAD::ad_type_enum>&  type_x      ,
      vector<bool>&                       depend_x    ,
      const vector<bool>&                 depend_y    )
   {  assert( parameter_x.size() == depend_x.size() );
      bool ok = depend_x.size() == 3; // n
      ok     &= depend_y.size() == 4; // m
      if( ! ok )
         return false;
      depend_x[0] = depend_y[0] || depend_y[1];
      depend_x[1] = depend_y[1] || depend_y[2];
      depend_x[2] = depend_y[2] || depend_y[3];
      return true;
   }
   virtual bool forward(
      const vector<double>&               parameter_x ,
      const vector<CppAD::ad_type_enum>&  type_x      ,
      size_t                              need_y    ,
      size_t                              order_low ,
      size_t                              order_up  ,
      const vector<double>&               taylor_x  ,
      vector<double>&                     taylor_y
   )
   {
# ifndef NDEBUG
      size_t n = taylor_x.size() / (order_up + 1);
      size_t m = taylor_y.size() / (order_up + 1);
# endif
      assert( n == 3 );
      assert( m == 4 );
      assert( order_low <= order_up );

      // return flag
      bool ok = order_up == 0;
      if( ! ok )
         return ok;

      // g_0 = x_0 * x_0
      taylor_y[0] = taylor_x[0] * taylor_x[0];
      // g_1 = x_0 * x_1
      taylor_y[1] = taylor_x[0] * taylor_x[1];
      // g_2 = x_1 * x_2
      taylor_y[2] = taylor_x[1] * taylor_x[2];
      // g_3 = x_2 * x_2
      taylor_y[3] = taylor_x[2] * taylor_x[2];

      return ok;
   }
}; // End of dynamic_optimize class

// ---------------------------------------------------------------------------
bool optimize_dynamic_one(void)
{  bool ok = true;
   using CppAD::AD;
   using CppAD::NearEqual;
   double eps = 10. * CppAD::numeric_limits<double>::epsilon();
   dynamic_optimize afun("dynamic_optimize");
   //
   // constant parameter
   double c_0 = 2.0;
   //
   // independent dynamic parameter vector
   size_t np = 1;
   CPPAD_TESTVECTOR(double) p(np);
   CPPAD_TESTVECTOR( AD<double> ) ap(np);
   ap[0] = p[0] = 3.0;
   //
   // independent variable vector
   size_t  nu  = 1;
   double  u_0 = 0.5;
   CPPAD_TESTVECTOR( AD<double> ) au(nu);
   au[0] = u_0;

   // declare independent variables and start tape recording
   CppAD::Independent(au, ap);

   // create a dynamic parameter that is not used
   AD<double> ar = 2.0 * ap[0];

   // call atomic function and store result in ay
   CPPAD_TESTVECTOR( AD<double> ) ax(3), av(4);
   ax[0] = c_0;   // x_0 = c
   ax[1] = ap[0]; // x_1 = p
   ax[2] = au[0]; // x_2 = u
   afun(ax, av);

   // check type of result
   ok &= Constant( av[0] ); // v_0 = c * c
   ok &= Dynamic(  av[1] ); // v_1 = c * p
   ok &= Variable( av[2] ); // v_2 = p * u
   ok &= Variable( av[3] ); // v_3 = u * u

   // range space vector
   size_t ny = 3;
   CPPAD_TESTVECTOR( AD<double> ) ay(ny);
   for(size_t i = 0; i < ny; ++i)
      ay[i] = av[i];

   // create f: u -> y and stop tape recording
   CppAD::ADFun<double> f;
   f.Dependent (au, ay);  // f(u) = (c * c, c * p, p * u)

   // sequence properties
   ok &= f.size_dyn_ind() == 1; // p
   ok &= f.size_dyn_par() == 3; // p, r, c * p
   // Three constant parameters: nan, c, c * c
   ok &= f.size_par() == 6;
   // Normal variables: u, p * u, u * u
   // Extra variables: phanton at index 0, y[0], y[1]
   ok &= f.size_var() == 6;

   // optimize
   f.optimize();

   // sequence properties
   ok &= f.size_dyn_ind() == 1; // p
   ok &= f.size_dyn_par() == 2; // c * p

   // Four constant parameters: nan, zero, c, c * c
   ok &= f.size_par() == 6;

   // Normal variables: u, p * u
   // Extra variables: phanton at index 0, y[0], y[1]
   ok &= f.size_var() == 5;

   // check
   double check;

   // check zero order forward mode
   size_t q;
   CPPAD_TESTVECTOR( double ) u_q(nu), y_q(ny);
   q      = 0;
   u_q[0] = u_0;
   y_q    = f.Forward(q, u_q);
   check  = c_0 * c_0;
   ok    &= NearEqual(y_q[0] , check,  eps, eps);
   check = c_0 * p[0];
   ok    &= NearEqual(y_q[1] , check,  eps, eps);
   check = p[0] * u_0;
   ok    &= NearEqual(y_q[2] , check,  eps, eps);

   // set new value for dynamic parameters
   p[0]  = 2.0 * p[0];
   f.new_dynamic(p);
   y_q   = f.Forward(q, u_q);
   check = c_0 * c_0;
   ok    &= NearEqual(y_q[0] , check,  eps, eps);
   check = c_0 * p[0];
   ok    &= NearEqual(y_q[1] , check,  eps, eps);
   check = p[0] * u_0;
   ok    &= NearEqual(y_q[2] , check,  eps, eps);

   return ok;
}
// ---------------------------------------------------------------------------
bool optimize_dynamic_two(void)
{  bool ok = true;
   using CppAD::AD;
   using CppAD::NearEqual;
   double eps = 10. * CppAD::numeric_limits<double>::epsilon();
   dynamic_optimize afun("dynamic_optimize");
   //
   // independent dynamic parameter vector
   size_t np = 1;
   CPPAD_TESTVECTOR(double) p(np);
   CPPAD_TESTVECTOR( AD<double> ) ap(np);
   ap[0] = p[0] = 3.0;
   //
   // independent variable vector
   size_t  nu  = 1;
   double  u_0 = 0.5;
   CPPAD_TESTVECTOR( AD<double> ) au(nu);
   au[0] = u_0;

   // declare independent variables and start tape recording
   CppAD::Independent(au, ap);

   // create a dynamic parameter that is used by atomic function
   // but not needed to compute f(u)
   AD<double> ar = 2.0 * ap[0];

   // call atomic function and store result in ay
   CPPAD_TESTVECTOR( AD<double> ) ax(3), av(4);
   ax[0] = au[0]; // x_0 = u
   ax[1] = ap[0]; // x_1 = p
   ax[2] = ar;    // x_2 = r
   afun(ax, av);

   // check type of result
   ok &= Variable( av[0] );  // v_0 = u * u , used
   ok &= Variable( av[1] );  // v_1 = u * p , used
   ok &= Dynamic( av[2] );   // v_2 = r * p , not used
   ok &= Dynamic( av[3] );   // v_3 = r * r , not used

   // range space vector
   size_t ny = 2;
   CPPAD_TESTVECTOR( AD<double> ) ay(ny);
   for(size_t i = 0; i < ny; ++i)
      ay[i] = av[i];

   // create f: u -> y and stop tape recording
   CppAD::ADFun<double> f;
   f.Dependent (au, ay);  // f(u) = (u * u, u * p)

   // sequence properties
   ok &= f.size_dyn_ind() == 1; // p
   ok &= f.size_dyn_par() == 4; // p, r, r * p, r * r
   // Two constant parameters: nan, 2.0 in computation of r
   ok &= f.size_par() == 6;


   // optimize
   f.optimize();

   // sequence properties
   ok &= f.size_dyn_ind() == 1; // p
   ok &= f.size_dyn_par() == 1; // p
   // Two constant parameter: nan, zero
   ok &= f.size_par() == 3;

   // check
   double check;

   // check zero order forward mode
   size_t q;
   CPPAD_TESTVECTOR( double ) u_q(nu), y_q(ny);
   q      = 0;
   u_q[0] = u_0;
   y_q    = f.Forward(q, u_q);
   check  = u_0 * u_0;
   ok    &= NearEqual(y_q[0] , check,  eps, eps);
   check = u_0 * p[0];
   ok    &= NearEqual(y_q[1] , check,  eps, eps);

   // set new value for dynamic parameters
   p[0]  = 2.0 * p[0];
   f.new_dynamic(p);
   y_q   = f.Forward(q, u_q);
   check = u_0 * u_0;
   ok    &= NearEqual(y_q[0] , check,  eps, eps);
   check = u_0 * p[0];
   ok    &= NearEqual(y_q[1] , check,  eps, eps);

   return ok;
}
// ---------------------------------------------------------------------------
bool optimize_dynamic_three(void)
{  bool ok = true;
   using CppAD::AD;
   using CppAD::NearEqual;
   double eps = 10. * CppAD::numeric_limits<double>::epsilon();
   dynamic_optimize afun("dynamic_optimize");
   //
   // independent dynamic parameter vector
   size_t np = 1;
   CPPAD_TESTVECTOR(double) p(np);
   CPPAD_TESTVECTOR( AD<double> ) ap(np);
   ap[0] = p[0] = 3.0;
   //
   // independent variable vector
   size_t  nu  = 1;
   double  u_0 = 0.5;
   CPPAD_TESTVECTOR( AD<double> ) au(nu);
   au[0] = u_0;

   // declare independent variables and start tape recording
   CppAD::Independent(au, ap);

   // create a dynamic parameter that is used by atomic function
   // but not needed to compute f(u)
   AD<double> ar = 2.0 * ap[0];

   // call atomic function and store result in ay
   CPPAD_TESTVECTOR( AD<double> ) ax(3), av(4);
   ax[0] = au[0]; // x_0 = u
   ax[1] = ar;    // x_1 = r
   ax[2] = ap[0]; // x_2 = p
   afun(ax, av);

   // check type of result
   ok &= Variable( av[0] );  // v_0 = u * u , used
   ok &= Variable( av[1] );  // v_1 = u * r , used
   ok &= Dynamic( av[2] );   // v_2 = r * p , not used
   ok &= Dynamic( av[3] );   // v_3 = p * p , not used

   // range space vector
   size_t ny = 2;
   CPPAD_TESTVECTOR( AD<double> ) ay(ny);
   for(size_t i = 0; i < ny; ++i)
      ay[i] = av[i];

   // create f: u -> y and stop tape recording
   CppAD::ADFun<double> f;
   f.Dependent (au, ay);  // f(u) = (u * u, u * p)

   // sequence properties
   ok &= f.size_dyn_ind() == 1; // p
   ok &= f.size_dyn_par() == 4; // p, r, r * p, p * p
   // Two constant parameters: nan, 2.0 in computation of r
   ok &= f.size_par() == 6;


   // optimize
   f.optimize();

   // sequence properties
   ok &= f.size_dyn_ind() == 1; // p
   ok &= f.size_dyn_par() == 2; // p, r
   // Three constant parameters: nan, zero, 2.0 in computation of r
   ok &= f.size_par() == 5;

   // check
   double check;

   // check zero order forward mode
   double r = 2.0 * p[0];
   size_t q;
   CPPAD_TESTVECTOR( double ) u_q(nu), y_q(ny);
   q      = 0;
   u_q[0] = u_0;
   y_q    = f.Forward(q, u_q);
   check  = u_0 * u_0;
   ok    &= NearEqual(y_q[0] , check,  eps, eps);
   check = u_0 * r;
   ok    &= NearEqual(y_q[1] , check,  eps, eps);

   // set new value for dynamic parameters
   p[0]  = 2.0 * p[0];
   r     = 2.0 * p[0];
   f.new_dynamic(p);
   y_q   = f.Forward(q, u_q);
   check = u_0 * u_0;
   ok    &= NearEqual(y_q[0] , check,  eps, eps);
   check = u_0 * r;
   ok    &= NearEqual(y_q[1] , check,  eps, eps);

   return ok;
}
// ============================================================================
// Testing Variables that get removed
// ============================================================================
class variable_optimize : public CppAD::atomic_three<double> {
public:
   // can use const char* name when calling this constructor
   variable_optimize(const std::string& name) : // can have more arguments
   CppAD::atomic_three<double>(name)          // inform base class of name
   { }

private:
   // calculate type_y
   virtual bool for_type(
      const vector<double>&               parameter_x ,
      const vector<CppAD::ad_type_enum>&  type_x      ,
      vector<CppAD::ad_type_enum>&        type_y      )
   {  assert( parameter_x.size() == type_x.size() );
      bool ok = type_x.size() == 2; // n
      ok     &= type_y.size() == 2; // m
      if( ! ok )
         return false;
      type_y[0] = type_x[0];
      type_y[1] = std::max( type_x[0], type_x[1] );
      return true;
   }
   // calculate depend_x
   virtual bool rev_depend(
      const vector<double>&               parameter_x ,
      const vector<CppAD::ad_type_enum>&  type_x      ,
      vector<bool>&                       depend_x    ,
      const vector<bool>&                 depend_y    )
   {  assert( parameter_x.size() == depend_x.size() );
      bool ok = depend_x.size() == 2; // n
      ok     &= depend_y.size() == 2; // m
      if( ! ok )
         return false;
      depend_x[0] = depend_y[0] || depend_y[1];
      depend_x[1] = depend_y[1];
      return true;
   }
   virtual bool forward(
      const vector<double>&               parameter_x ,
      const vector<CppAD::ad_type_enum>&  type_x      ,
      size_t                              need_y    ,
      size_t                              order_low ,
      size_t                              order_up  ,
      const vector<double>&               taylor_x  ,
      vector<double>&                     taylor_y
   )
   {
# ifndef NDEBUG
      size_t n = taylor_x.size() / (order_up + 1);
      size_t m = taylor_y.size() / (order_up + 1);
# endif
      assert( n == 2 );
      assert( m == 2 );
      assert( order_low <= order_up );

      // return flag
      bool ok = order_up == 0;
      if( ! ok )
         return ok;

      // g_0 = exp( x_0 )
      taylor_y[0] = std::exp( taylor_x[0] );
      // g_1 = exp( x_0 * x_1 )
      taylor_y[1] = std::exp( taylor_x[0] * taylor_x[1] );

      return ok;
   }
   virtual bool reverse(
      const vector<double>&               parameter_x ,
      const vector<CppAD::ad_type_enum>&  type_x      ,
      size_t                              order_up    ,
      const vector<double>&               taylor_x    ,
      const vector<double>&               taylor_y    ,
      vector<double>&                     partial_x   ,
      const vector<double>&               partial_y
   )
   {
      size_t q1 = order_up + 1;
      size_t n  = taylor_x.size() / q1;
# ifndef NDEBUG
      size_t m  = taylor_y.size() / q1;
# endif
      assert( n == 2 );
      assert( m == 2 );

      // return flag
      bool ok = order_up == 0;
      if( ! ok )
         return ok;

      // initialize summation as zero
      for(size_t j = 0; j < n; ++j)
         partial_x[j] = 0.0;

      // g_0  = exp( x_0 )
      partial_x[0] += partial_y[0] * taylor_y[0];
      // g_1 = exp( x_0 * x_1 )
      partial_x[0] += partial_y[1] * taylor_y[1] * taylor_x[1];
      partial_x[1] += partial_y[1] * taylor_y[1] * taylor_x[0];
      //
      return ok;
   }
}; // End of variable_optimize class
// ---------------------------------------------------------------------------
bool optimize_variable_one(void)
{  bool ok = true;
   using CppAD::AD;
   using CppAD::NearEqual;
   double eps = 10. * CppAD::numeric_limits<double>::epsilon();
   variable_optimize afun("variable_optimize");
   //
   // independent variable vector
   size_t  nu  = 2;
   CPPAD_TESTVECTOR( AD<double> ) au(nu);
   for(size_t j = 0; j < nu; ++j)
      au[j] = double(j + 1);

   // declare independent variables and start tape recording
   CppAD::Independent(au);

   // call atomic function and store result in ay
   CPPAD_TESTVECTOR( AD<double> ) ax(nu), av(nu);
   for(size_t j = 0; j < nu; ++j)
      ax[j] = au[j] / 2.0; // x = u / 2
   afun(ax, av);

   // check type of result
   for(size_t j = 0; j < nu; ++j)
      ok &= Variable( av[j] );

   // range space vector
   size_t ny = 1;
   CPPAD_TESTVECTOR( AD<double> ) ay(ny);
   //
   // only the first component of av affects the function value
   ay[0] = av[0];

   // create f: u -> y and stop tape recording
   CppAD::ADFun<double> f;
   f.Dependent (au, ay);  // f(u) = exp( u[0] / 2 )

   // optimize
   f.optimize();

   // check
   double check;

   // check zero order forward mode
   CPPAD_TESTVECTOR( double ) u(nu), y(ny);
   for(size_t j = 0; j < nu; ++j)
      u[j] = double(j + 1) / double(nu);
   y    = f.Forward(0, u);
   check  = std::exp( u[0] / 2.0 );
   ok    &= NearEqual(y[0] , check,  eps, eps);

   // Check first order reverse mode. This test would vaile when
   // nan was used for argument and function values that were optimized out
   // because they were not used.
   CPPAD_TESTVECTOR( double ) w(ny), dw(nu);
   w[0] = 1.0;
   dw  = f.Reverse(1, w);
   check  = std::exp( u[0] / 2.0 ) / 2.0;
   ok    &= NearEqual(dw[0] , check,  eps, eps);
   check  = 0.0;
   ok    &= NearEqual(dw[1] , check,  eps, eps);
   //
   return ok;
}
}  // End empty namespace

bool atomic_three(void)
{  bool ok = true;
   ok     &= optimize_dynamic_one();
   ok     &= optimize_dynamic_two();
   ok     &= optimize_dynamic_three();
   ok     &= optimize_variable_one();
   return ok;
}