1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
# include <cppad/cppad.hpp>
namespace {
using CppAD::AD;
typedef CPPAD_TESTVECTOR(AD<double>) ADVector;
// ------------------------------------------------------------------------
bool f_algo(const ADVector& x, ADVector& y)
{ size_t m = y.size();
assert( size_t(x.size()) == m + 1);
for(size_t i = 0; i < m; i++)
y[i] = x[i] * x[i+1];
return true;
}
bool g_algo(const ADVector& y, ADVector& z)
{ size_t m = z.size();
assert( size_t(y.size()) + 1 == m );
z[0] = 0.0;
for(size_t i = 1; i < m; i++)
{ z[0] += y[i-1];
z[i] = y[i-1];
}
return true;
}
bool test_one(void)
{ bool ok = true;
using CppAD::checkpoint;
using CppAD::ADFun;
using CppAD::NearEqual;
size_t i, j, k, n = 4, ell = n-1 , m = ell + 1;
double eps = 10. * std::numeric_limits<double>::epsilon();
// checkpoint version of the function F(x)
ADVector ax(n), ay(ell), az(m);
for(j = 0; j < n; j++)
ax[j] = double(j);
checkpoint<double> f_check("f_check", f_algo, ax, ay);
checkpoint<double> g_check("g_check", g_algo, ay, az);
// Record a version of z = g[f(x)] without checkpointing
Independent(ax);
f_algo(ax, ay);
g_algo(ay, az);
ADFun<double> check_not(ax, az);
// Record a version of z = g[f(x)] with checkpointing
Independent(ax);
f_check(ax, ay);
g_check(ay, az);
ADFun<double> check_yes(ax, az);
// compare forward mode results for orders 0, 1, 2
size_t p = 2;
CPPAD_TESTVECTOR(double) x_p(n*(p+1)), z_not(m*(p+1)), z_yes(m*(p+1));
for(j = 0; j < n; j++)
{ for(k = 0; k <= p; k++)
x_p[ j * (p+1) + k ] = 1.0 / double(p + 1 - k);
}
z_not = check_not.Forward(p, x_p);
z_yes = check_yes.Forward(p, x_p);
for(i = 0; i < m; i++)
{ for(k = 0; k <= p; k++)
{ double zik_not = z_not[ i * (p+1) + k];
double zik_yes = z_yes[ i * (p+1) + k];
ok &= NearEqual(zik_not, zik_yes, eps, eps);
}
}
// compare reverse mode results
CPPAD_TESTVECTOR(double) w(m*(p+1)), dw_not(n*(p+1)), dw_yes(n*(p+1));
for(i = 0; i < m; i++)
{ for(k = 0; k <= p; k++)
w[ i * (p+1) + k ] = 2.0 / double(p + 1 - k );
}
dw_not = check_not.Reverse(p+1, w);
dw_yes = check_yes.Reverse(p+1, w);
for(j = 0; j < n; j++)
{ for(k = 0; k <= p; k++)
{ double dwjk_not = dw_not[ j * (p+1) + k];
double dwjk_yes = dw_yes[ j * (p+1) + k];
ok &= NearEqual(dwjk_not, dwjk_yes, eps, eps);
}
}
// mix sparsity so test both cases
f_check.option( CppAD::atomic_base<double>::bool_sparsity_enum );
g_check.option( CppAD::atomic_base<double>::set_sparsity_enum );
// compare forward mode Jacobian sparsity patterns
size_t q = n - 1;
CppAD::vector< std::set<size_t> > r(n), s_not(m), s_yes(m);
for(j = 0; j < n; j++)
{ if( j < q )
r[j].insert(j);
else
{ r[j].insert(0);
r[j].insert(1);
}
}
s_not = check_not.ForSparseJac(q, r);
s_yes = check_yes.ForSparseJac(q, r);
for(i = 0; i < m; i++)
ok &= s_not[i] == s_yes[i];
// compare reverse mode Jacobian sparsity patterns
CppAD::vector< std::set<size_t> > s(m), r_not(m), r_yes(m);
for(i = 0; i < m; i++)
s[i].insert(i);
r_not = check_not.RevSparseJac(m, s);
r_yes = check_yes.RevSparseJac(m, s);
for(i = 0; i < m; i++)
ok &= s_not[i] == s_yes[i];
// compare reverse mode Hessian sparsity patterns
CppAD::vector< std::set<size_t> > s_one(1), h_not(q), h_yes(q);
for(i = 0; i < m; i++)
s_one[0].insert(i);
h_not = check_not.RevSparseHes(q, s_one);
h_yes = check_yes.RevSparseHes(q, s_one);
for(i = 0; i < q; i++)
ok &= h_not[i] == h_yes[i];
checkpoint<double>::clear();
return ok;
}
// ------------------------------------------------------------------------
bool h_algo(const ADVector& ax, ADVector& ay)
{ ay[0] = ax[0];
ay[1] = ax[1] + ax[2];
return true;
}
bool test_two(void)
{ bool ok = true;
using CppAD::checkpoint;
using CppAD::ADFun;
using CppAD::NearEqual;
// checkpoint version of H(x)
size_t m = 2;
size_t n = 3;
ADVector ax(n), ay(m);
for(size_t j = 0; j < n; j++)
ax[j] = double(j);
checkpoint<double> h_check("h_check", h_algo, ax, ay);
// record function using h_check
Independent(ax);
h_check(ax, ay);
ADFun<double> h(ax, ay);
//
// --------------------------------------------------------------------
// sparsity pattern
// --------------------------------------------------------------------
for(size_t k = 0; k < 3; k++)
{ if( k == 0 )
h_check.option(CppAD::atomic_base<double>::pack_sparsity_enum);
if( k == 1 )
h_check.option(CppAD::atomic_base<double>::bool_sparsity_enum);
if( k == 2 )
h_check.option(CppAD::atomic_base<double>::set_sparsity_enum);
// compute sparsity pattern h_1(x) = x[1] + x[2]
CppAD::vector< std::set<size_t> > r(1), s(1);
r[0].insert(1);
s = h.RevSparseJac(1, r);
// check result
std::set<size_t> check;
check.insert(1);
check.insert(2);
ok &= s[0] == check;
}
// --------------------------------------------------------------------
// base2ad
// --------------------------------------------------------------------
ADFun< AD<double> , double > ah;
ah = h.base2ad();
//
// forward mode
ADVector au(n), av(m);
for(size_t j = 0; j < n; j++)
ax[j] = au[j] = double(j + 1);
av = ah.Forward(0, au);
h_algo(ax, ay);
for(size_t i = 0; i < m; ++i)
ok &= av[i] == ay[i];
//
// reverse mode
ADVector adw(n), aw(m);
for(size_t i = 0; i < m; ++i)
aw[i] = 1.0;
adw = ah.Reverse(1, aw);
ok &= Value( adw[0] ) == 1.0;
ok &= Value( adw[1] ) == 1.0;
ok &= Value( adw[2] ) == 1.0;
//
return ok;
}
}
bool chkpoint_one(void)
{ bool ok = true;
ok &= test_one();
ok &= test_two();
return ok;
}
// END C++
|