1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
# include <cppad/cppad.hpp>
namespace {
using CppAD::AD;
using CppAD::vector;
using CppAD::chkpoint_two;
// -----------------------------------------------------------------------
template <class Algo>
chkpoint_two<double> checkpoint_two(
std::string name ,
Algo& algo ,
vector< AD<double> >& ax ,
vector< AD<double> >& ay )
{ CppAD::Independent(ax);
algo(ax, ay);
CppAD::ADFun<double> g_fun(ax, ay);
bool internal_bool = false;
bool use_hes_sparsity = true;
bool use_base2ad = true;
bool use_in_parallel = false;
return chkpoint_two<double>(g_fun, name,
internal_bool, use_hes_sparsity, use_base2ad, use_in_parallel
);
}
// ----------------------------------------------------------------
// Test for bug where checkpoint function did not depend on
// the operands in the logical comparison because of the CondExp
// sparsity pattern.
void j_algo(
const CppAD::vector< CppAD::AD<double> >& ax ,
CppAD::vector< CppAD::AD<double> >& ay )
{ ay[0] = CondExpGt(ax[0], ax[1], ax[2], ax[3]); }
bool test_one(void)
{ bool ok = true;
using CppAD::NearEqual;
double eps10 = 10.0 * std::numeric_limits<double>::epsilon();
// Create a checkpoint version of the function g
vector< AD<double> > au(4), av(1);
for(size_t i = 0; i < 4; i++)
au[i] = AD<double>(i);
chkpoint_two<double> j_check =
checkpoint_two("j_check", j_algo, au, av);
// independent variable vector
vector< AD<double> > ax(2), ay(1);
ax[0] = 1.;
ax[1] = 1.;
Independent(ax);
// call atomic function that does not get used
for(size_t i = 0; i < 4; i++)
au[i] = ax[0] + AD<double>(i + 1) * ax[1];
j_check(au, ay);
// create function object f : ax -> ay
CppAD::ADFun<double> f(ax, ay);
// now optimize the operation sequence
f.optimize();
// check result where true case is used; i.e., au[0] > au[1]
vector<double> x(2), y(1);
x[0] = 1.;
x[1] = -1;
y = f.Forward(0, x);
ok &= NearEqual(y[0], x[0] + double(3) * x[1], eps10, eps10);
// check result where false case is used; i.e., au[0] <= au[1]
x[0] = 1.;
x[1] = 1;
y = f.Forward(0, x);
ok &= NearEqual(y[0], x[0] + double(4) * x[1], eps10, eps10);
return ok;
}
// -------------------------------------------------------------------
// Test conditional optimizing out call to an atomic function call
void k_algo(
const CppAD::vector< CppAD::AD<double> >& x ,
CppAD::vector< CppAD::AD<double> >& y )
{ y[0] = x[0] + x[1]; }
void h_algo(
const CppAD::vector< CppAD::AD<double> >& x ,
CppAD::vector< CppAD::AD<double> >& y )
{ y[0] = x[0] - x[1]; }
bool test_two(void)
{ bool ok = true;
typedef vector< AD<double> > ADVector;
using CppAD::NearEqual;
double eps10 = 10.0 * std::numeric_limits<double>::epsilon();
// Create a checkpoint version of the function g
ADVector ax(2), ag(1), ah(1), ay(1);
ax[0] = 0.;
ax[1] = 1.;
chkpoint_two<double> k_check =
checkpoint_two("k_check", k_algo, ax, ag);
chkpoint_two<double> h_check =
checkpoint_two("h_check", h_algo, ax, ah);
// independent variable vector
Independent(ax);
// atomic function calls that get conditionally used
k_check(ax, ag);
h_check(ax, ah);
// conditional expression
ay[0] = CondExpLt(ax[0], ax[1], ag[0], ah[0]);
// create function object f : ax -> ay
CppAD::ADFun<double> f;
f.Dependent(ax, ay);
// use zero order to evaluate when condition is true
CppAD::vector<double> x(2), dx(2);
CppAD::vector<double> y(1), dy(1), w(1);
x[0] = 3.;
x[1] = 4.;
y = f.Forward(0, x);
ok &= NearEqual(y[0], x[0] + x[1], eps10, eps10);
// before optimize
ok &= f.number_skip() == 0;
// now optimize the operation sequence
f.optimize();
// optimized zero order forward when condition is false
x[0] = 4.;
x[1] = 3.;
y = f.Forward(0, x);
ok &= NearEqual(y[0], x[0] - x[1], eps10, eps10);
// after optimize can skip either call to g or call to h
ok &= f.number_skip() == 1;
// optimized first order forward
dx[0] = 2.;
dx[1] = 1.;
dy = f.Forward(1, dx);
ok &= NearEqual(dy[0], dx[0] - dx[1], eps10, eps10);
// optimized first order reverse
w[0] = 1.;
dx = f.Reverse(1, w);
ok &= NearEqual(dx[0], 1., eps10, eps10);
ok &= NearEqual(dx[1], -1., eps10, eps10);
return ok;
}
// -------------------------------------------------------------------
// Test of optimizing out arguments to an atomic function
void g_algo(
const CppAD::vector< CppAD::AD<double> >& ax ,
CppAD::vector< CppAD::AD<double> >& ay )
{ ay = ax; }
bool test_three(void)
{ bool ok = true;
using CppAD::NearEqual;
double eps10 = 10.0 * std::numeric_limits<double>::epsilon();
// Create a checkpoint version of the function g
vector< AD<double> > ax(2), ay(2), az(1);
ax[0] = 0.;
ax[1] = 1.;
chkpoint_two<double> g_check =
checkpoint_two("g_check", g_algo, ax, ay);
// independent variable vector
Independent(ax);
// call atomic function that does not get used
g_check(ax, ay);
// conditional expression
az[0] = CondExpLt(ax[0], ax[1], ax[0] + ax[1], ax[0] - ax[1]);
// create function object f : ax -> az
CppAD::ADFun<double> f(ax, az);
// number of variables before optimization
// (include ay[0] and ay[1])
size_t n_before = f.size_var();
// now optimize the operation sequence
f.optimize();
// number of variables after optimization
// (does not include ay[0] and ay[1])
size_t n_after = f.size_var();
ok &= n_after + 2 == n_before;
// check optimization works ok
vector<double> x(2), z(1);
x[0] = 4.;
x[1] = 3.;
z = f.Forward(0, x);
ok &= NearEqual(z[0], x[0] - x[1], eps10, eps10);
return ok;
}
bool test_four(void)
{ bool ok = true;
using CppAD::NearEqual;
double eps10 = 10.0 * std::numeric_limits<double>::epsilon();
vector< AD<double> > au(2), aw(2), ax(2), ay(1);
// create atomic function corresponding to g_algo
au[0] = 1.0;
au[1] = 2.0;
chkpoint_two<double> g_check =
checkpoint_two("g_algo", g_algo, au, ax);
// start recording a new function
CppAD::Independent(ax);
// now use g_check during the recording
au[0] = ax[0] + ax[1]; // this argument requires a new variable
au[1] = ax[0] - ax[1]; // this argument also requires a new variable
g_check(au, aw);
// now create f(x) = x_0 + x_1
ay[0] = aw[0];
CppAD::ADFun<double> f(ax, ay);
// number of variables before optimization
// ax[0], ax[1], ax[0] + ax[1], ax[0] - ax[1], g[0], g[1]
// and phantom variable at index 0
size_t n_before = f.size_var();
ok &= n_before == 7;
// now optimize f so that the calculation of au[1] is removed
f.optimize();
// number of variables after optimization
// ax[0], ax[1], ax[0] + ax[1], g[0]
// and phantom variable at index 0
size_t n_after = f.size_var();
ok &= n_after == 5;
// now compute and check a forward mode calculation
vector<double> x(2), y(1);
x[0] = 5.0;
x[1] = 6.0;
y = f.Forward(0, x);
ok &= NearEqual(y[0], x[0] + x[1], eps10, eps10);
return ok;
}
// -----------------------------------------------------------------------
void i_algo(
const CppAD::vector< CppAD::AD<double> >& ax ,
CppAD::vector< CppAD::AD<double> >& ay )
{ ay[0] = 1.0 / ax[0]; }
//
// Test bug where atomic functions were not properly conditionally skipped.
bool test_five(bool conditional_skip)
{ bool ok = true;
using CppAD::AD;
using CppAD::NearEqual;
double eps10 = 10.0 * std::numeric_limits<double>::epsilon();
using CppAD::vector;
// Create a checkpoint version of the function i_algo
vector< AD<double> > au(1), av(1), aw(1);
au[0] = 1.0;
chkpoint_two<double> i_check =
checkpoint_two("i_check", i_algo, au, av);
// independent variable vector
vector< AD<double> > ax(2), ay(1);
ax[0] = 1.0;
ax[1] = 2.0;
Independent(ax);
// call atomic function that does not get used
au[0] = ax[0];
i_check(au, av);
au[0] = ax[1];
i_check(au, aw);
AD<double> zero = 0.0;
ay[0] = CondExpGt(av[0], zero, av[0], aw[0]);
// create function object f : ax -> ay
CppAD::ADFun<double> f(ax, ay);
// run case that skips the second call to afun
// (can use trace in sweep/forward_0.hpp to see this).
vector<double> x(2), y_before(1), y_after(1);
x[0] = 1.0;
x[1] = 2.0;
y_before = f.Forward(0, x);
if( conditional_skip )
f.optimize();
else
f.optimize("no_conditional_skip");
y_after = f.Forward(0, x);
ok &= NearEqual(y_before[0], y_after[0], eps10, eps10);
return ok;
}
// -----------------------------------------------------------------------
void m_algo(
const CppAD::vector< CppAD::AD<double> >& ax ,
CppAD::vector< CppAD::AD<double> >& ay )
{ ay[0] = 0.0;
for(size_t j = 0; j < ax.size(); ++j)
ay[0] += ax[j] * ax[j];
}
//
// Test bug where select_y[i] should be select_x[i]
bool test_six(void)
{ bool ok = true;
using CppAD::AD;
using CppAD::NearEqual;
using CppAD::vector;
// Create a checkpoint version of the function m_algo
size_t n = 3, m = 1;
vector< AD<double> > ax(n), ay(m);
for(size_t j = 0; j < n; ++j)
ax[j] = 1.0;
chkpoint_two<double> m_check =
checkpoint_two("m_check", m_algo, ax, ay);
// independent variable vector
Independent(ax);
// call atomic function that does not get used
m_check(ax, ay);
// create function object f : ax -> ay
CppAD::ADFun<double> f(ax, ay);
// Evaluate Hessian sparsity
vector<bool> select_domain(n), select_range(m);
select_range[0] = true;
for(size_t j = 0; j < n; ++j)
select_domain[j] = true;
bool internal_bool = true;
CppAD::sparse_rc< vector<size_t> > pattern_out;
//
f.for_hes_sparsity(
select_domain, select_range, internal_bool, pattern_out
);
size_t nnz = pattern_out.nnz();
const vector<size_t>& row( pattern_out.row() );
const vector<size_t>& col( pattern_out.col() );
vector<size_t> row_major = pattern_out.row_major();
//
ok &= nnz == n;
for(size_t k = 0; k < nnz; ++k)
{ ok &= row[ row_major[k] ] == k;
ok &= col[ row_major[k] ] == k;
}
return ok;
}
}
bool chkpoint_two(void)
{ bool ok = true;
//
ok &= test_one();
ok &= test_two();
ok &= test_three();
ok &= test_four();
ok &= test_five(true);
ok &= test_five(false);
ok &= test_six();
//
return ok;
}
// END C++
|