1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
Two old Div examples now used just for valiadation testing
*/
# include <cppad/cppad.hpp>
namespace { // BEGIN empty namespace
bool DivTestOne(void)
{ bool ok = true;
using namespace CppAD;
using CppAD::NearEqual;
double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
// assign some parameters
AD<double> zero = 0.;
AD<double> one = 1.;
// independent variable vector, indices, values, and declaration
CPPAD_TESTVECTOR(AD<double>) U(2);
size_t s = 0;
size_t t = 1;
U[s] = 2.;
U[t] = 3.;
Independent(U);
// dependent variable vector and indices
CPPAD_TESTVECTOR(AD<double>) Z(6);
size_t x = 0;
size_t y = 1;
size_t z = 2;
size_t u = 3;
size_t v = 4;
size_t w = 5;
// dependent variables
Z[x] = U[s] / U[t]; // AD<double> / AD<double>
Z[y] = Z[x] / 4.; // AD<double> / double
Z[z] = 5. / Z[y]; // double / AD<double>
Z[u] = Z[z] / one; // division by a parameter equal to one
Z[v] = Z[z] / 1.; // division by a double equal to one
Z[w] = zero / Z[z]; // division into a parameter equal to zero
// check division into a zero valued parameter results in a parameter
// (must do this before creating f because it erases the tape)
ok &= Parameter(Z[w]);
// create f : U -> Z and vectors used for derivative calculations
ADFun<double> f(U, Z);
CPPAD_TESTVECTOR(double) q( f.Domain() );
CPPAD_TESTVECTOR(double) r( f.Range() );
// check parameter flag
ok &= f.Parameter(w);
// check values
ok &= NearEqual( Z[x] , 2. / 3. , eps99, eps99);
ok &= NearEqual( Z[y] , 2. / ( 3. * 4. ) , eps99, eps99);
ok &= NearEqual( Z[z] , 5. * 3. * 4. / 2. , eps99, eps99);
ok &= ( Z[w] == 0. );
ok &= ( Z[u] == Z[z] );
// forward computation of partials w.r.t. s
q[s] = 1.;
q[t] = 0.;
r = f.Forward(1, q);
ok &= NearEqual(r[x], 1./U[t], eps99, eps99); // dx/ds
ok &= NearEqual(r[y], 1./(U[t]*4.), eps99, eps99); // dy/ds
ok &= NearEqual(r[z], -5.*U[t]*4./(U[s]*U[s]), eps99, eps99); // dz/ds
ok &= ( r[u] == r[z] ); // du/ds
ok &= ( r[v] == r[z] ); // dv/ds
ok &= ( r[w] == 0. ); // dw/ds
// forward computation in the direction (1, 1)
q[s] = 1.;
q[t] = 1.;
r = f.Forward(1, q);
ok &= NearEqual(r[x], 1./U[t] - U[s]/(U[t] * U[t]), eps99, eps99);
// second order reverse mode computation
CPPAD_TESTVECTOR(double) Q( f.Domain() * 2 );
r[x] = 1.;
r[y] = r[z] = r[u] = r[v] = r[w] = 0.;
Q = f.Reverse(2, r);
ok &= NearEqual(
Q[s * f.Domain() + 1],
- 1. / (U[t] * U[t]),
eps99,
eps99
);
return ok;
}
bool DivTestTwo(void)
{ bool ok = true;
using namespace CppAD;
using CppAD::NearEqual;
double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
// independent variable vector
double u0 = .5;
CPPAD_TESTVECTOR(AD<double>) U(1);
U[0] = u0;
Independent(U);
AD<double> a = U[0] / 1.; // AD<double> / double
AD<double> b = a / 2; // AD<double> / int
AD<double> c = 3. / b; // double / AD<double>
AD<double> d = 4 / c; // int / AD<double>
// dependent variable vector
CPPAD_TESTVECTOR(AD<double>) Z(1);
Z[0] = U[0] * U[0] / d; // AD<double> / AD<double>
// create f: U -> Z and vectors used for derivative calculations
ADFun<double> f(U, Z);
CPPAD_TESTVECTOR(double) v(1);
CPPAD_TESTVECTOR(double) w(1);
// check value
ok &= NearEqual(Value(Z[0]) , u0*u0/(4/(3/(u0/2))), eps99, eps99);
// forward computation of partials w.r.t. u
size_t j;
size_t p = 5;
double jfac = 1.;
v[0] = 1.;
double value = 6. / 4.;
for(j = 1; j < p; j++)
{
jfac *= double(j);
w = f.Forward(j, v);
ok &= NearEqual(w[0], value/jfac, eps99, eps99); // d^jz/du^j
v[0] = 0.;
value = 0.;
}
// reverse computation of partials of Taylor coefficients
CPPAD_TESTVECTOR(double) r(p);
w[0] = 1.;
r = f.Reverse(p, w);
jfac = 1.;
value = 6. / 4.;
for(j = 0; j < p; j++)
{
ok &= NearEqual(r[j], value/jfac, eps99, eps99); // d^jz/du^j
jfac *= double(j + 1);
value = 0.;
}
return ok;
}
bool DivTestThree(void)
{ bool ok = true;
using namespace CppAD;
using CppAD::NearEqual;
double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
// more testing of variable / variable case
double x0 = 2.;
double x1 = 3.;
size_t n = 2;
CPPAD_TESTVECTOR(AD<double>) X(n);
X[0] = x0;
X[1] = x1;
Independent(X);
size_t m = 1;
CPPAD_TESTVECTOR(AD<double>) Y(m);
Y[0] = X[0] / X[1];
ADFun<double> f(X, Y);
CPPAD_TESTVECTOR(double) dx(n), dy(m);
double check;
dx[0] = 1.;
dx[1] = 1.;
dy = f.Forward(1, dx);
check = 1. / x1 - x0 / (x1 * x1);
ok &= NearEqual(dy[0], check, eps99, eps99);
CPPAD_TESTVECTOR(double) w(m), dw(n);
w[0] = 1.;
dw = f.Reverse(1, w);
check = 1. / x1;
ok &= NearEqual(dw[0], check, eps99, eps99);
check = - x0 / (x1 * x1);
ok &= NearEqual(dw[1], check, eps99, eps99);
return ok;
}
} // END empty namespace
bool Div(void)
{ bool ok = true;
ok &= DivTestOne();
ok &= DivTestTwo();
ok &= DivTestThree();
return ok;
}
|