File: div.cpp

package info (click to toggle)
cppad 2026.00.00.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,584 kB
  • sloc: cpp: 112,960; sh: 6,146; ansic: 179; python: 71; sed: 12; makefile: 10
file content (207 lines) | stat: -rw-r--r-- 5,692 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------

/*
Two old Div examples now used just for valiadation testing
*/

# include <cppad/cppad.hpp>

namespace { // BEGIN empty namespace

bool DivTestOne(void)
{  bool ok = true;

   using namespace CppAD;
   using CppAD::NearEqual;
   double eps99 = 99.0 * std::numeric_limits<double>::epsilon();

   // assign some parameters
   AD<double> zero = 0.;
   AD<double>  one = 1.;

   // independent variable vector, indices, values, and declaration
   CPPAD_TESTVECTOR(AD<double>) U(2);
   size_t s = 0;
   size_t t = 1;
   U[s]     = 2.;
   U[t]     = 3.;
   Independent(U);

   // dependent variable vector and indices
   CPPAD_TESTVECTOR(AD<double>) Z(6);
   size_t x = 0;
   size_t y = 1;
   size_t z = 2;
   size_t u = 3;
   size_t v = 4;
   size_t w = 5;

   // dependent variables
   Z[x] = U[s]   / U[t];   // AD<double> / AD<double>
   Z[y] = Z[x]   / 4.;     // AD<double> / double
   Z[z] = 5. / Z[y];       //     double / AD<double>
   Z[u] =  Z[z] / one;     // division by a parameter equal to one
   Z[v] =  Z[z] / 1.;      // division by a double equal to one
   Z[w] =  zero / Z[z];    // division into a parameter equal to zero

   // check division into a zero valued parameter results in a parameter
   // (must do this before creating f because it erases the tape)
   ok &= Parameter(Z[w]);

   // create f : U -> Z and vectors used for derivative calculations
   ADFun<double> f(U, Z);
   CPPAD_TESTVECTOR(double) q( f.Domain() );
   CPPAD_TESTVECTOR(double) r( f.Range() );

   // check parameter flag
   ok &= f.Parameter(w);

   // check values
   ok &= NearEqual( Z[x] , 2. / 3. , eps99, eps99);
   ok &= NearEqual( Z[y] , 2. / ( 3. * 4. ) , eps99, eps99);
   ok &= NearEqual( Z[z] , 5. * 3. * 4. / 2. , eps99, eps99);
   ok &= ( Z[w] == 0. );
   ok &= ( Z[u] == Z[z] );

   // forward computation of partials w.r.t. s
   q[s] = 1.;
   q[t] = 0.;
   r    = f.Forward(1, q);
   ok &= NearEqual(r[x], 1./U[t], eps99, eps99); // dx/ds
   ok &= NearEqual(r[y], 1./(U[t]*4.), eps99, eps99); // dy/ds
   ok &= NearEqual(r[z], -5.*U[t]*4./(U[s]*U[s]), eps99, eps99); // dz/ds
   ok &= ( r[u] == r[z] );                                       // du/ds
   ok &= ( r[v] == r[z] );                                       // dv/ds
   ok &= ( r[w] == 0. );                                         // dw/ds

   // forward computation in the direction (1, 1)
   q[s] = 1.;
   q[t] = 1.;
   r    = f.Forward(1, q);
   ok  &= NearEqual(r[x], 1./U[t] - U[s]/(U[t] * U[t]), eps99, eps99);

   // second order reverse mode computation
   CPPAD_TESTVECTOR(double) Q( f.Domain() * 2 );
   r[x] = 1.;
   r[y] = r[z] = r[u] = r[v] = r[w] = 0.;
   Q    = f.Reverse(2, r);
   ok  &= NearEqual(
      Q[s * f.Domain() + 1],
      - 1. / (U[t] * U[t]),
      eps99,
      eps99
   );

   return ok;
}

bool DivTestTwo(void)
{  bool ok = true;
   using namespace CppAD;
   using CppAD::NearEqual;
   double eps99 = 99.0 * std::numeric_limits<double>::epsilon();

   // independent variable vector
   double u0 = .5;
   CPPAD_TESTVECTOR(AD<double>) U(1);
   U[0]      = u0;
   Independent(U);

   AD<double> a = U[0] / 1.; // AD<double> / double
   AD<double> b = a  / 2;    // AD<double> / int
   AD<double> c = 3. / b;    // double     / AD<double>
   AD<double> d = 4  / c;    // int        / AD<double>

   // dependent variable vector
   CPPAD_TESTVECTOR(AD<double>) Z(1);
   Z[0] = U[0] * U[0] / d;   // AD<double> / AD<double>

   // create f: U -> Z and vectors used for derivative calculations
   ADFun<double> f(U, Z);
   CPPAD_TESTVECTOR(double) v(1);
   CPPAD_TESTVECTOR(double) w(1);

   // check value
   ok &= NearEqual(Value(Z[0]) , u0*u0/(4/(3/(u0/2))), eps99, eps99);

   // forward computation of partials w.r.t. u
   size_t j;
   size_t p     = 5;
   double jfac  = 1.;
   v[0]         = 1.;
   double value = 6. / 4.;
   for(j = 1; j < p; j++)
   {
      jfac *= double(j);
      w     = f.Forward(j, v);
      ok &= NearEqual(w[0], value/jfac, eps99, eps99); // d^jz/du^j
      v[0]  = 0.;
      value = 0.;
   }

   // reverse computation of partials of Taylor coefficients
   CPPAD_TESTVECTOR(double) r(p);
   w[0]  = 1.;
   r     = f.Reverse(p, w);
   jfac  = 1.;
   value = 6. / 4.;
   for(j = 0; j < p; j++)
   {
      ok &= NearEqual(r[j], value/jfac, eps99, eps99); // d^jz/du^j
      jfac *= double(j + 1);
      value = 0.;
   }

   return ok;
}

bool DivTestThree(void)
{  bool ok = true;
   using namespace CppAD;
   using CppAD::NearEqual;
   double eps99 = 99.0 * std::numeric_limits<double>::epsilon();

   // more testing of variable / variable case
   double x0 = 2.;
   double x1 = 3.;
   size_t n  = 2;
   CPPAD_TESTVECTOR(AD<double>) X(n);
   X[0]      = x0;
   X[1]      = x1;
   Independent(X);
   size_t m  = 1;
   CPPAD_TESTVECTOR(AD<double>) Y(m);
   Y[0]      = X[0] / X[1];
   ADFun<double> f(X, Y);

   CPPAD_TESTVECTOR(double) dx(n), dy(m);
   double check;
   dx[0] = 1.;
   dx[1] = 1.;
   dy    = f.Forward(1, dx);
   check = 1. / x1 - x0 / (x1 * x1);
   ok   &= NearEqual(dy[0], check, eps99, eps99);

   CPPAD_TESTVECTOR(double) w(m), dw(n);
   w[0]  = 1.;
   dw    = f.Reverse(1, w);
   check = 1. / x1;
   ok   &= NearEqual(dw[0], check, eps99, eps99);
   check = - x0 / (x1 * x1);
   ok   &= NearEqual(dw[1], check, eps99, eps99);

   return ok;
}

} // END empty namespace

bool Div(void)
{  bool ok = true;
   ok &= DivTestOne();
   ok &= DivTestTwo();
   ok &= DivTestThree();
   return ok;
}