1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
Old DivEq example now used just for valiadation testing
*/
# include <cppad/cppad.hpp>
namespace { // BEGIN empty namespace
bool DivEqTestOne(void)
{ bool ok = true;
using namespace CppAD;
using CppAD::NearEqual;
double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
// independent variable vector, indices, values, and declaration
CPPAD_TESTVECTOR(AD<double>) U(2);
size_t s = 0;
size_t t = 1;
U[s] = 3.;
U[t] = 2.;
Independent(U);
// dependent variable vector and indices
CPPAD_TESTVECTOR(AD<double>) Z(2);
size_t x = 0;
size_t y = 1;
// some constants
AD<double> zero = 0.;
AD<double> one = 1.;
// dependent variable values
Z[x] = U[s];
Z[y] = U[t];
Z[x] /= U[t]; // AD<double> *= AD<double>
Z[y] /= 5.; // AD<double> *= double
zero /= Z[y]; // divide into a parameter equal to zero
Z[y] /= one; // divide by a parameter equal to one
Z[y] /= 1.; // divide by a double equal to one
// check that zero is still a parameter
// (must do this before creating f because it erases the tape)
ok &= Parameter(zero);
// create f : U -> Z and vectors for derivative calculations
ADFun<double> f(U, Z);
CPPAD_TESTVECTOR(double) v( f.Domain() );
CPPAD_TESTVECTOR(double) w( f.Range() );
// check that none of the components of f are parameters
size_t i;
for(i = 0; i < f.Range(); i++)
ok &= ! f.Parameter(i);
// check function values
ok &= NearEqual(Z[x] , 3. / 2. , eps99, eps99);
ok &= NearEqual(Z[y] , 2. / 5. , eps99, eps99);
// forward computation of partials w.r.t. t
v[s] = 0.;
v[t] = 1.;
w = f.Forward(1, v);
ok &= NearEqual(w[x] , -1.*U[s]/(U[t]*U[t]) , eps99, eps99); // dx/dt
ok &= NearEqual(w[y] , 1. / 5. , eps99, eps99); // dy/dt
// reverse computation of second partials of x
CPPAD_TESTVECTOR(double) r( f.Domain() * 2 );
w[x] = 1.;
w[y] = 0.;
r = f.Reverse(2, w);
ok &= NearEqual(r[2 * s + 1] // d^2 x / (dt ds)
, - 1. / (U[t] * U[t]) , eps99 , eps99 );
ok &= NearEqual(r[2 * t + 1] // d^2 x / (dt dt)
, 2. * U[s] / (U[t] * U[t] * U[t]) , eps99 , eps99 );
return ok;
}
bool DivEqTestTwo(void)
{ bool ok = true;
using namespace CppAD;
using CppAD::NearEqual;
double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
// independent variable vector
double u0 = .5;
CPPAD_TESTVECTOR(AD<double>) U(1);
U[0] = u0;
Independent(U);
// dependent variable vector
CPPAD_TESTVECTOR(AD<double>) Z(1);
Z[0] = U[0] * U[0]; // initial value
Z[0] /= 2; // AD<double> /= int
Z[0] /= 4.; // AD<double> /= double
Z[0] /= U[0]; // AD<double> /= AD<double>
// create f: U -> Z and vectors used for derivative calculations
ADFun<double> f(U, Z);
CPPAD_TESTVECTOR(double) v(1);
CPPAD_TESTVECTOR(double) w(1);
// check value
ok &= NearEqual(Z[0] , u0*u0/(2*4*u0), eps99, eps99);
// forward computation of partials w.r.t. u
size_t j;
size_t p = 5;
double jfac = 1.;
double value = 1./8.;
v[0] = 1.;
for(j = 1; j < p; j++)
{ jfac *= double(j);
w = f.Forward(j, v);
ok &= NearEqual(w[0], value/jfac, eps99, eps99); // d^jz/du^j
v[0] = 0.;
value = 0.;
}
// reverse computation of partials of Taylor coefficients
CPPAD_TESTVECTOR(double) r(p);
w[0] = 1.;
r = f.Reverse(p, w);
jfac = 1.;
value = 1./8.;
for(j = 0; j < p; j++)
{ ok &= NearEqual(r[j], value/jfac, eps99, eps99); // d^jz/du^j
jfac *= double(j + 1);
value = 0.;
}
return ok;
}
} // END empty namespace
bool DivEq(void)
{ bool ok = true;
ok &= DivEqTestOne();
ok &= DivEqTestTwo();
return ok;
}
|