File: erf.cpp

package info (click to toggle)
cppad 2026.00.00.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,584 kB
  • sloc: cpp: 112,960; sh: 6,146; ansic: 179; python: 71; sed: 12; makefile: 10
file content (214 lines) | stat: -rw-r--r-- 7,016 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------

# include <cppad/cppad.hpp>

namespace {
   // ---------------------------------------------------------------------
   bool old_example(void)
   {  bool ok = true;
      using namespace CppAD;
      using CppAD::atan;
      using CppAD::exp;
      using CppAD::sqrt;
      double eps = 100.0 * std::numeric_limits<double>::epsilon();
      // Construct function object corresponding to erf
      CPPAD_TESTVECTOR(AD<double>) ax(1);
      CPPAD_TESTVECTOR(AD<double>) ay(1);
      ax[0] = 0.;
      Independent(ax);
      ay[0] = erf(ax[0]);
      ADFun<double> f(ax, ay);

      // Construct function object corresponding to derivative of erf
      Independent(ax);
      double pi = 4.0 * atan(1.0);
      ay[0] = exp( - ax[0] * ax[0] ) * 2.0 / sqrt(pi);
      ADFun<double> df(ax, ay);

      // vectors to use with function object
      CPPAD_TESTVECTOR(double) x0(1), y0(1), x1(1), y1(1), check(1);

      // check value at zero
      x0[0]    = 1.5;
      y0       = f.Forward(0, x0);
      check[0] = 0.96611;
      ok      &= std::fabs(check[0] - y0[0]) <= 4e-4;

      // check the derivative of error function
      x1[0] = 1.0;
      y1    = f.Forward(1, x1);
      check = df.Forward(0, x0);
      ok   &= NearEqual(check[0], y1[0], 0., 2e-3);
      ok   &= NearEqual(check[0], y1[0], eps, eps);

      // check second derivative
      CPPAD_TESTVECTOR(double) x2(1), y2(1);
      x2[0] = 0.0;
      y2    = f.Forward(2, x2);
      check = df.Forward(1, x1);
      ok   &= NearEqual(check[0] / 2.0, y2[0], 0., 2e-3);
      ok   &= NearEqual(check[0] / 2.0, y2[0], eps, eps);

      // check third derivative
      CPPAD_TESTVECTOR(double) x3(1), y3(1);
      x3[0] = 0.0;
      y3    = f.Forward(3, x3);
      check = df.Forward(2, x2);
      ok   &= NearEqual(check[0] / 3.0, y3[0], 0., 2e-3);
      ok   &= NearEqual(check[0] / 3.0, y3[0], eps, eps);

      // check 4-th order of reverse mode
      CPPAD_TESTVECTOR(double) w(1), dy(4), x4(1), y4(1);
      x4[0] = 0.0;
      w[0]  = 1.0;
      dy    = f.Reverse(4, w);
      y4    = f.Forward(4, x4);
      //
      ok  &= NearEqual(dy[0], y1[0], 0., 2e-3);
      ok  &= NearEqual(dy[0], y1[0], eps, eps);
      //
      ok  &= NearEqual(dy[1], 2.0 * y2[0], 0., 2e-3);
      ok  &= NearEqual(dy[1], 2.0 * y2[0], eps, eps);
      //
      ok  &= NearEqual(dy[2], 3.0 * y3[0], 0., 2e-3);
      ok  &= NearEqual(dy[2], 3.0 * y3[0], eps, eps);
      //
      ok  &= NearEqual(dy[3], 4.0 * y4[0], 0., 2e-3);
      ok  &= NearEqual(dy[3], 4.0 * y4[0], eps, eps);

      return ok;
   }
   // ---------------------------------------------------------------------
   bool hessian(void)
   {  bool ok = true;
      double eps = 1.0 * std::numeric_limits<double>::epsilon();
      using CppAD::vector;
      using CppAD::AD;

      size_t n = 2;
      size_t m = 1;
      vector<double> x(n), w(m);
      w[0] = 1.0;
      vector< AD<double> > ax(n), ay(m);
      ax[0] = x[0] = 0.5;
      ax[1] = x[1] = 0.0;

      // construct function
      CppAD::Independent(ax);
      ay[0] = erf( 2.0 * ax[0] );
      CppAD::ADFun<double> f(ax, ay);

      // dense hessian
      vector<double> dense_hess = f.Hessian(x, 0);

      // sparse_hessian
      vector<double> sparse_hess = f.SparseHessian(x, w);

      // Define g(u) = erf(2 * u)
      // g'(u)   = 2 * erf'(2 * u)
      //         = 2 * exp( - 2 * u * 2 * u ) * 2 / sqrt(pi)
      //         = exp( - 4 * u * u ) * 4 / sqrt(pi)
      // g''(u)  = - exp( - 4 * u * u ) * 32 * u / sqrt(pi)
      double root_pi = std::sqrt( 4.0 * atan(1.0) );
      double check   = -std::exp(-4.0 * x[0] * x[0]) * 32.0 * x[0] / root_pi;

      ok &= CppAD::NearEqual(dense_hess[0], check, eps, eps);
      ok &= CppAD::NearEqual(sparse_hess[0], check, eps, eps);

      for(size_t k = 1; k < n * n; k++)
      {  ok &= CppAD::NearEqual(dense_hess[k], 0.0, eps, eps);
         ok &= CppAD::NearEqual(sparse_hess[k], 0.0, eps, eps);
      }
      return ok;
   }
   // ---------------------------------------------------------------------
   bool mul_dir(void)
   {  bool ok = true;
      using namespace CppAD;
      using CppAD::atan;
      using CppAD::exp;
      using CppAD::sqrt;
      double eps = 100.0 * std::numeric_limits<double>::epsilon();

      // Construct function object corresponding to erf
      CPPAD_TESTVECTOR(AD<double>) ax(1);
      CPPAD_TESTVECTOR(AD<double>) ay(1);
      ax[0] = 0.;
      Independent(ax);
      ay[0] = erf(ax[0]);
      ADFun<double> f(ax, ay);

      // Construct function object corresponding to derivative of erf
      Independent(ax);
      double pi = 4.0 * atan(1.0);
      ay[0] = exp( - ax[0] * ax[0] ) * 2.0 / sqrt(pi);
      ADFun<double> df(ax, ay);

      // number of directions
      size_t r = 1;

      // vectors to use with objects
      CPPAD_TESTVECTOR(double) x0(1), y0(1), x1(1), y1(1), y2(1), y3(1);
      CPPAD_TESTVECTOR(double) zero(1), check(1);
      CPPAD_TESTVECTOR(double) xq(r), yq(r), checkq(r), zeroq(r);

      // check function value
      x0[0]      = 1.5;
      y0         = f.Forward(0, x0);
      check[0]   = 0.9661051464753108;
      double tmp = std::max(1e-15, eps);
      ok        &= NearEqual(check[0], y0[0], 0.0, tmp);

      // check first order derivative
      x1[0] = 1.0;
      y1    = f.Forward(1, x1);
      check = df.Forward(0, x0);
      ok   &= NearEqual(check[0], y1[0], eps, eps);
      for(size_t ell = 0; ell < r; ell++)
      {  xq[ell]     = x1[ell] / double(ell + 1);
         zeroq[ell]  = 0.0;
      }
      yq    = f.Forward(1, r, xq);
      for(size_t ell = 0; ell < r; ell++)
      {  checkq[ell] = check[0] * xq[ell];
         ok         &= NearEqual(checkq[ell], yq[ell], eps, eps);
      }

      // check second order derivative
      zero[0]   = 0.0;
      y2        = f.Forward(2, zero);
      check     = df.Forward(1, x1);
      check[0] /= 2.0;
      ok       &= NearEqual(check[0], y2[0], eps, eps);
      yq        = f.Forward(2, r, zeroq);
      for(size_t ell = 0; ell < r; ell++)
      {  checkq[ell] = check[0] * xq[ell];
         ok         &= NearEqual(checkq[ell], yq[ell], eps, eps);
      }

      // check third order derivative
      zero[0]   = 0.0;
      y3        = f.Forward(3, zero);
      check     = df.Forward(2, zero);
      check[0] /= 3.0;
      ok       &= NearEqual(check[0], y3[0], eps, eps);
      yq        = f.Forward(3, r, zeroq);
      for(size_t ell = 0; ell < r; ell++)
      {  checkq[ell] = check[0] * xq[ell];
         ok         &= NearEqual(checkq[ell], yq[ell], eps, eps);
      }

      return ok;
   }
   // -------------------------------------------------------------------
}
bool erf(void)
{  bool ok = true;
   ok     &= old_example();
   ok     &= hessian();
   ok     &= mul_dir();
   return ok;
}