File: for_hess.cpp

package info (click to toggle)
cppad 2026.00.00.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,584 kB
  • sloc: cpp: 112,960; sh: 6,146; ansic: 179; python: 71; sed: 12; makefile: 10
file content (102 lines) | stat: -rw-r--r-- 3,137 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------


/*
Old ForHess example now used just for valiadation testing
*/

# include <cppad/cppad.hpp>


bool ForHess(void)
{  bool ok = true;

   using namespace CppAD;
   using CppAD::exp;
   using CppAD::sin;
   using CppAD::cos;
   using CppAD::NearEqual;
   double eps99 = 99.0 * std::numeric_limits<double>::epsilon();

   size_t i;

   // create independent variable vector with assigned values
   CPPAD_TESTVECTOR(double)      u0(3);
   CPPAD_TESTVECTOR(AD<double>) U(3);
   for(i = 0; i < 3; i++)
      U[i] = u0[i] = double(i+1);
   Independent( U );

   // define the function
   CPPAD_TESTVECTOR(AD<double>) Y(2);
   Y[0] = U[0] * exp( U[1] );
   Y[1] = U[1] * sin( U[2] );

   // create the function y = F(u)
   ADFun<double> F(U, Y);

   // formulas for the upper triangle of Hessian of F_0
   CPPAD_TESTVECTOR(double) H0(9);
   H0[0] = 0.;                    // d^2 y[0] / d_u[0] d_u[0]
   H0[1] = exp( u0[1] );          // d^2 y[0] / d_u[0] d_u[1]
   H0[2] = 0.;                    // d^2 y[0] / d_u[0] d_u[2]

   H0[4] = u0[0] * exp( u0[1] );  // d^2 y[0] / d_u[1] d_u[1]
   H0[5] = 0.;                    // d^2 y[0] / d_u[1] d_u[2]

   H0[8] = 0.;                    // d^2 y[0] / d_u[2] d_u[2]

   // formulas for the upper triangle of Hessian of F_1
   CPPAD_TESTVECTOR(double) H1(9);
   H1[0] = 0.;                    // d^2 Y[1] / d_U[0] d_U[0]
   H1[1] = 0.;                    // d^2 Y[1] / d_U[0] d_U[1]
   H1[2] = 0.;                    // d^2 Y[1] / d_U[0] d_U[2]

   H1[4] = 0.;                    // d^2 Y[1] / d_U[1] d_U[1]
   H1[5] = cos( u0[2] );          // d^2 Y[1] / d_U[1] d_U[2]

   H1[8] = - u0[1] * sin( u0[2] );// d^2 Y[1] / d_U[2] d_U[2]


   // Define U(t) = u0 + u1 t + u2 t^2 / 2
   CPPAD_TESTVECTOR(double) u1(3);
   CPPAD_TESTVECTOR(double) u2(3);
   for(i = 0; i < 3; i++)
      u1[i] = u2[i] = 0.;

   size_t j;
   for(i = 0; i < 3; i++)
   {  // diagonal of Hessians in i-th coordinate direction
      u1[i] = 1.;
      F.Forward(1, u1);
      CPPAD_TESTVECTOR(double) Di = F.Forward(2, u2);
      ok &= NearEqual( 2. * Di[0] , H0[ i + 3 * i], eps99, eps99);
      ok &= NearEqual( 2. * Di[1] , H1[ i + 3 * i], eps99, eps99);
      //
      for(j = i+1; j < 3; j++)
      {  // cross term in i and j direction
         u1[j] = 1.;
         F.Forward(1, u1);
         CPPAD_TESTVECTOR(double) Cij = F.Forward(2, u2);

         // diagonal of Hessian in j-th coordinate direction
         u1[i] = 0.;
         F.Forward(1, u1);
         CPPAD_TESTVECTOR(double) Dj = F.Forward(2, u2);

         // (i, j) elements of the Hessians
         double H0ij = Cij[0] - Di[0] - Dj[0];
         ok &= NearEqual( H0ij, H0[j + 3 * i], eps99, eps99);
         double H1ij = Cij[1] - Di[1] - Dj[1];
         ok &= NearEqual( H1ij, H1[j + 3 * i], eps99, eps99);

         // reset all components of u1 to zero
         u1[j] = 0.;
      }
   }

   return ok;
}