1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
Two old Forward example now used just for valiadation testing
*/
# include <cppad/cppad.hpp>
namespace { // Begin empty namespace
template <class DoubleVector> // vector class, elements of type double
bool ForwardCases(void)
{ bool ok = true;
using namespace CppAD;
using CppAD::NearEqual;
double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
// independent variable vector
CPPAD_TESTVECTOR(AD<double>) X(2);
X[0] = 0.;
X[1] = 1.;
Independent(X);
// compute product of elements in X
CPPAD_TESTVECTOR(AD<double>) Y(1);
Y[0] = X[0] * X[0] * X[1];
// create function object F : X -> Y
ADFun<double> F(X, Y);
// use zero order to evaluate F[ (3, 4) ]
DoubleVector x0( F.Domain() );
DoubleVector y0( F.Range() );
x0[0] = 3.;
x0[1] = 4.;
y0 = F.Forward(0, x0);
ok &= NearEqual(y0[0] , x0[0]*x0[0]*x0[1], eps99, eps99);
// evaluate derivative of F in X[0] direction
DoubleVector x1( F.Domain() );
DoubleVector y1( F.Range() );
x1[0] = 1.;
x1[1] = 0.;
y1 = F.Forward(1, x1);
ok &= NearEqual(y1[0] , 2.*x0[0]*x0[1], eps99, eps99);
// evaluate second derivative of F in X[0] direction
DoubleVector x2( F.Domain() );
DoubleVector y2( F.Range() );
x2[0] = 0.;
x2[1] = 0.;
y2 = F.Forward(2, x2);
double F_00 = 2. * y2[0];
ok &= NearEqual(F_00, 2.*x0[1], eps99, eps99);
// evaluate derivative of F in X[1] direction
x1[0] = 0.;
x1[1] = 1.;
y1 = F.Forward(1, x1);
ok &= NearEqual(y1[0] , x0[0]*x0[0], eps99, eps99);
// evaluate second derivative of F in X[1] direction
y2 = F.Forward(2, x2);
double F_11 = 2. * y2[0];
ok &= NearEqual(F_11, 0., eps99, eps99);
// evaluate derivative of F in X[0] + X[1] direction
x1[0] = 1.;
x1[1] = 1.;
y1 = F.Forward(1, x1);
ok &= NearEqual(y1[0], 2.*x0[0]*x0[1] + x0[0]*x0[0], eps99, eps99);
// use second derivative of F in X[0] direction to
// compute second partial of F w.r.t X[1] w.r.t X[2]
y2 = F.Forward(2, x2);
double F_01 = y2[0] - F_00 / 2. - F_11 / 2.;
ok &= NearEqual(F_01 , 2.*x0[0], eps99, eps99);
return ok;
}
bool ForwardOlder(void)
{ bool ok = true;
using namespace CppAD;
using CppAD::NearEqual;
double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
// independent variable vector
CPPAD_TESTVECTOR(AD<double>) U(3);
U[0] = 0.; U[1] = 1.; U[2] = 2.;
Independent(U);
// compute sum and product of elements in U
AD<double> sum = 0.;
AD<double> prod = 1.;
size_t i;
for(i = 0; i < 3; i++)
{ sum += U[i];
prod *= U[i];
}
// dependent variable vector
CPPAD_TESTVECTOR(AD<double>) V(2);
V[0] = sum;
V[1] = prod;
// V = f(U)
ADFun<double> f(U, V);
// use ADFun object to evaluate f[ (1, 2, 3)^T ] -----------------
CPPAD_TESTVECTOR(double) u0( f.Domain() );
CPPAD_TESTVECTOR(double) v0( f.Range() );
size_t p;
p = 0;
u0[0] = 1.; u0[1] = 2.; u0[2] = 3.;
v0 = f.Forward(p, u0);
// direct evaluation of f[ u0 ]
CPPAD_TESTVECTOR(double) f0(2);
f0[0] = u0[0] + u0[1] + u0[2];
f0[1] = u0[0] * u0[1] * u0[2];
// compare values
ok &= NearEqual(v0[0] , f0[0], eps99, eps99);
ok &= NearEqual(v0[1] , f0[1], eps99, eps99);
// use ADFun object to evaluate f^(1) [ u0 ] * u1 -----------------
CPPAD_TESTVECTOR(double) u1( f.Domain() );
CPPAD_TESTVECTOR(double) v1( f.Range() );
p = 1;
u1[0] = 1.; u1[1] = 1.; u1[2] = 1.;
v1 = f.Forward(p, u1);
// direct evaluation of gradients of components of f
CPPAD_TESTVECTOR(double) g0(3), g1(3);
g0[0] = 1.; g0[1] = 1.; g0[2] = 1.;
g1[0] = u0[1]*u0[2]; g1[1] = u0[0]*u0[2]; g1[2] = u0[0]*u0[1];
// compare values
ok &= NearEqual(v1[0] ,
g0[0]*u1[0] + g0[1]*u1[1] + g0[2]*u1[2] , eps99, eps99);
ok &= NearEqual(v1[1] ,
g1[0]*u1[0] + g1[1]*u1[1] + g1[2]*u1[2] , eps99, eps99);
// use ADFun object to evaluate ------------------------------------
// (1/2) * { f^(1)[ u0 ] * u2 + u1^T * f^(2)[ u0 ] * u1 }
CPPAD_TESTVECTOR(double) u2( f.Domain() );
CPPAD_TESTVECTOR(double) v2( f.Range() );
p = 2;
u2[0] = .5; u2[1] = .4; u2[2] = .3;
v2 = f.Forward(p, u2);
// direct evaluation of Hessian of second components of f
// (the Hessian of the first component is zero)
CPPAD_TESTVECTOR(double) H1(9);
H1[0] = 0.; H1[1] = u0[2]; H1[2] = u0[1];
H1[3] = u0[2]; H1[4] = 0.; H1[5] = u0[0];
H1[6] = u0[1]; H1[7] = u0[0]; H1[8] = 0.;
// compare values
ok &= NearEqual(v2[0] ,
g0[0]*u2[0] + g0[1]*u2[1] + g0[2]*u2[2] , eps99, eps99);
size_t j;
double v2_1 = 0.;
for(i = 0; i < 3; i++)
{ v2_1 += g1[i] * u2[i];
for(j = 0; j < 3; j++)
v2_1 += .5 * u1[i] * H1[i * 3 + j] * u1[j];
}
ok &= NearEqual(v2[1], v2_1, eps99, eps99);
return ok;
}
# ifndef NDEBUG
# if ! CPPAD_DEBUG_AND_RELEASE
void my_error_handler(
bool known ,
int line ,
const char *file ,
const char *exp ,
const char *msg )
{ // error handler must not return, so throw an exception
std::string message = msg;
throw message;
}
bool forward_nan(void)
{
using CppAD::vector;
using CppAD::AD;
size_t n = 2, m = 1;
vector< AD<double> > a_x(n), a_y(m);
a_x[0] = 1.;
a_x[1] = 2.;
Independent(a_x);
a_y[0] = a_x[0] / a_x[1];
CppAD::ADFun<double> f(a_x, a_y);
//
vector<double> x(n), y(m);
x[0] = 0.;
x[1] = 0.;
// replace the default CppAD error handler
CppAD::ErrorHandler info(my_error_handler);
bool ok = false;
try {
y = f.Forward(0, x);
}
catch( std::string msg )
{ // check that the message contains
// "vector_size = " and "file_name = "
ok = msg.find("vector_size = ") != std::string::npos;
ok = msg.find("file_name = ") != std::string::npos;
}
return ok;
}
# endif
# endif
} // END empty namespace
# include <vector>
# include <valarray>
bool Forward(void)
{ bool ok = true;
ok &= ForwardCases< CppAD::vector <double> >();
ok &= ForwardCases< std::vector <double> >();
ok &= ForwardCases< std::valarray <double> >();
ok &= ForwardOlder();
# ifndef NDEBUG
# if ! CPPAD_DEBUG_AND_RELEASE
// CppAD does not check for nan when NDEBUG is defined
ok &= forward_nan();
# endif
# endif
return ok;
}
|