File: forward_order.cpp

package info (click to toggle)
cppad 2026.00.00.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,584 kB
  • sloc: cpp: 112,960; sh: 6,146; ansic: 179; python: 71; sed: 12; makefile: 10
file content (193 lines) | stat: -rw-r--r-- 5,424 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------

/*
*/
// BEGIN C++
# include <cppad/cppad.hpp>

namespace {

   double my_discrete(const double& x)
   {  return static_cast<int> ( x ); }
   CPPAD_DISCRETE_FUNCTION(double, my_discrete)

}
bool forward_order(void)
{  bool ok = true;
   using CppAD::AD;
   using CppAD::NearEqual;
   size_t j, k;
   double eps = 10. * CppAD::numeric_limits<double>::epsilon();

   // domain space vector
   size_t n = 23, m = n;
   CPPAD_TESTVECTOR(AD<double>) X(n), Y(m);
   for(j = 0; j < n; j++)
      X[j] = 0.0;

   // declare independent variables and starting recording
   CppAD::Independent(X);

   // identity function values
   size_t i = 0;
   size_t identity_begin = i;
   Y[i] = cos( acos( X[i] ) );                   i++; // AcosOp,  CosOp
   Y[i] = sin( asin( X[i] ) );                   i++; // AsinOp,  SinOp
   Y[i] = tan( atan( X[i] ) );                   i++; // AtanOp,  TanOp
   Y[i] = CondExpGt(X[i], X[i-1], X[i], X[i-2]); i++; // CExpOp
   Y[i] = X[i-1] * X[i] / X[i-1];                i++; // DivvvOp, MulvvOp
   Y[i] = X[i] * X[i] * 1.0 / X[i];              i++; // DivpvOp
   Y[i] = 5.0 * X[i] / 5.0;                      i++; // DivvpOp, MulpvOp
   Y[i] = exp( log( X[i] ) );                    i++; // ExpOp,   LogOp
   Y[i] = pow( sqrt( X[i] ), 2.0);               i++; // PowvpOp, SqrtOp
   Y[i] = log( pow( std::exp(1.), X[i] ) );      i++; // PowpvOp
   Y[i] = log( pow( X[i], X[i] ) ) / log( X[i]); i++; // PowvvOp
   Y[i] = -2. - ((X[i-1] - X[i]) - 2.) + X[i-1]; i++; // Sub*Op: pv, vv, vp
   size_t identity_end = i;

   // other functions
   Y[i] = fabs( X[i] );        i++;   // AbsOp
   Y[i] = X[i-1] + X[i] + 2.0; i++;   // AddvvOp, AddvpOp
   Y[i] = cosh( X[i] );        i++;   // CoshOp
   Y[i] = my_discrete( X[i] ); i++;   // DisOp
   Y[i] = 4.0;                 i++;   // ParOp
   Y[i] = sign( X[i] );        i++;   // SignOp
   Y[i] = sinh( X[i] );        i++;   // SinhOp
   Y[i] = tanh(X[i]);          i++;   // TanhOp

   // VecAD operations
   CppAD::VecAD<double> V(n);
   AD<double> index = 1.;
   V[index] = 3.0;
   Y[i]     = V[index];            i++;   // StppOp, LdpOp
   V[index] = X[0];
   Y[i]     = V[index];            i++;   // StpvOp, LdpOp
   index    = double(n) * X[3];
   V[index] = X[1];
   Y[i]     = V[index];            i++;   // StvvOp, LdvOp

   // create f: X -> Y and stop tape recording
   assert( i == m );
   CppAD::ADFun<double> f;
   f.Dependent(X, Y);

   // initially, no values stored in f
   ok &= f.size_order() == 0;

   // Set X_j (t) = x + t
   size_t p = 2, p1 = p+1;
   CPPAD_TESTVECTOR(double) x(n), x_p(n * p1), y_p(m * p1);
   for(j = 0; j < n; j++)
   {  x[j]            = double(j) / double(n);
      x_p[j * p1 + 0] = x[j]; // order 0
      x_p[j * p1 + 1] = 1.;   // order 1
      x_p[j * p1 + 2] = 0.;   // order 2
   }
   // compute orders 0, 1, 2
   y_p  = f.Forward(p, x_p);

   // identity functions
   CPPAD_TESTVECTOR(double) y(p1);
   i = 0;
   for(j = identity_begin; j != identity_end; j++)
   {  y[0] = x[j];
      y[1] = 1.0;
      y[2] = 0.0;
      for(k = 0; k < p1; k++)
         ok  &= NearEqual(y[k] , y_p[i * p1 + k], eps, eps);
      i++;
   }

   // y_i = fabs( x_i )
   y[0] = fabs( x[i] );
   y[1] = CppAD::sign( x[i] );
   y[2] = 0.0;
   for(k = 0; k < p1; k++)
      ok  &= NearEqual(y[k] , y_p[i * p1 + k], eps, eps);

   // y_i = x_[i-1] + x_i + 2
   i++;
   y[0] = x[i-1] + x[i] + 2.0;
   y[1] = 2.0;
   y[2] = 0.0;
   for(k = 0; k < p1; k++)
      ok  &= NearEqual(y[k] , y_p[i * p1 + k], eps, eps);

   // y_i = cosh( x_i )
   i++;
   y[0] = CppAD::cosh( x[i] );
   y[1] = CppAD::sinh( x[i] );
   y[2] = CppAD::cosh( x[i] ) / 2.0;
   for(k = 0; k < p1; k++)
      ok  &= NearEqual(y[k] , y_p[i * p1 + k], eps, eps);

   // y_i = my_discrete( x_i )
   i++;
   y[0] = my_discrete( x[i] );
   y[1] = 0.0;
   y[2] = 0.0;
   for(k = 0; k < p1; k++)
      ok  &= NearEqual(y[k] , y_p[i * p1 + k], eps, eps);

   // y_i = 4
   i++;
   y[0] = 4.0;
   y[1] = 0.0;
   y[2] = 0.0;
   for(k = 0; k < p1; k++)
      ok  &= NearEqual(y[k] , y_p[i * p1 + k], eps, eps);

   // y_i = sign( x_i )
   i++;
   y[0] = CppAD::sign( x[i] );
   y[1] = 0.0;
   y[2] = 0.0;
   for(k = 0; k < p1; k++)
      ok  &= NearEqual(y[k] , y_p[i * p1 + k], eps, eps);

   // y_i = sinh( x_i )
   i++;
   y[0] = CppAD::sinh( x[i] );
   y[1] = CppAD::cosh( x[i] );
   y[2] = CppAD::sinh( x[i] ) / 2.0;
   for(k = 0; k < p1; k++)
      ok  &= NearEqual(y[k] , y_p[i * p1 + k], eps, eps);

   // y_i = tanh( x_i )
   i++;
   y[0] = CppAD::tanh( x[i] );
   y[1] = 1.0 - y[0] * y[0];
   y[2] = - 2.0 * y[0] * y[1] / 2.0;
   for(k = 0; k < p1; k++)
      ok  &= NearEqual(y[k] , y_p[i * p1 + k], eps, eps);

   // y_i = 3.0;
   i++;
   y[0] = 3.0;
   y[1] = 0.0;
   y[2] = 0.0;
   for(k = 0; k < p1; k++)
      ok  &= NearEqual(y[k] , y_p[i * p1 + k], eps, eps);

   // y_i = x_0
   i++;
   y[0] = x[0];
   y[1] = 1.0;
   y[2] = 0.0;
   for(k = 0; k < p1; k++)
      ok  &= NearEqual(y[k] , y_p[i * p1 + k], eps, eps);

   // y_i = x_1
   i++;
   y[0] = x[1];
   y[1] = 1.0;
   y[2] = 0.0;
   for(k = 0; k < p1; k++)
      ok  &= NearEqual(y[k] , y_p[i * p1 + k], eps, eps);

   return ok;
}
// END C++