1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
old example, now just used for testing deprecated syntax f.Dependent(y)
*/
// BEGIN C++
# include <cppad/cppad.hpp>
namespace { // -----------------------------------------------------------
// define the template function object Fun<Type,Vector> in empty namespace
template <class Type, class Vector>
class Fun {
private:
size_t n;
public:
// function constructor
Fun(size_t n_) : n(n_)
{ }
// function evaluator
Vector operator() (const Vector &x)
{ Vector y(n);
size_t i;
for(i = 0; i < n; i++)
{ // This operation sequence depends on x
if( x[i] >= 0 )
y[i] = exp(x[i]);
else
y[i] = exp(-x[i]);
}
return y;
}
};
// template function FunCheckCases<Vector, ADVector> in empty namespace
template <class Vector, class ADVector>
bool FunCheckCases(void)
{ bool ok = true;
using CppAD::AD;
using CppAD::ADFun;
using CppAD::Independent;
double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
// use the ADFun default constructor
ADFun<double> f;
// domain space vector
size_t n = 2;
ADVector X(n);
X[0] = -1.;
X[1] = 1.;
// declare independent variables and starting recording
Independent(X);
// create function object to use with AD<double>
Fun< AD<double>, ADVector > G(n);
// range space vector
size_t m = n;
ADVector Y(m);
Y = G(X);
// stop tape and store operation sequence in f : X -> Y
f.Dependent(Y);
ok &= (f.size_order() == 0); // no implicit forward operation
// create function object to use with double
Fun<double, Vector> g(n);
// function values should agree when the independent variable
// values are the same as during recording
Vector x(n);
size_t j;
for(j = 0; j < n; j++)
x[j] = Value(X[j]);
double r = eps99;
double a = eps99;
ok &= FunCheck(f, g, x, a, r);
// function values should not agree when the independent variable
// values are the negative of values during recording
for(j = 0; j < n; j++)
x[j] = - Value(X[j]);
ok &= ! FunCheck(f, g, x, a, r);
// re-tape to obtain the new AD of double operation sequence
for(j = 0; j < n; j++)
X[j] = x[j];
Independent(X);
Y = G(X);
// stop tape and store operation sequence in f : X -> Y
f.Dependent(Y);
ok &= (f.size_order() == 0); // no implicit forward with this x
// function values should agree now
ok &= FunCheck(f, g, x, a, r);
return ok;
}
} // End empty namespace
# include <vector>
# include <valarray>
bool FunCheck(void)
{ bool ok = true;
typedef CppAD::vector<double> Vector1;
typedef CppAD::vector< CppAD::AD<double> > ADVector1;
typedef std::vector<double> Vector2;
typedef std::vector< CppAD::AD<double> > ADVector2;
typedef std::valarray<double> Vector3;
typedef std::valarray< CppAD::AD<double> > ADVector3;
// Run with Vector and ADVector equal to three different cases
// all of which are Simple Vectors with elements of type
// double and AD<double> respectively.
ok &= FunCheckCases< Vector1, ADVector2 >();
ok &= FunCheckCases< Vector2, ADVector3 >();
ok &= FunCheckCases< Vector3, ADVector1 >();
return ok;
}
// END C++
|