1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
Two old log examples now used just for validation testing
*/
# include <cppad/cppad.hpp>
namespace { // BEGIN empty namespace
bool LogTestOne(void)
{ bool ok = true;
using CppAD::log;
using namespace CppAD;
double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
// independent variable vector, indices, values, and declaration
CPPAD_TESTVECTOR(AD<double>) U(1);
size_t s = 0;
U[s] = 2.;
Independent(U);
// dependent variable vector, indices, and values
CPPAD_TESTVECTOR(AD<double>) Z(2);
size_t x = 0;
size_t y = 1;
Z[x] = log(U[s]);
Z[y] = log(Z[x]);
// define f : U -> Z and vectors for derivative calculations
ADFun<double> f(U, Z);
CPPAD_TESTVECTOR(double) v( f.Domain() );
CPPAD_TESTVECTOR(double) w( f.Range() );
// check values
ok &= NearEqual(Z[x] , log(2.), eps99 , eps99);
ok &= NearEqual(Z[y] , log( log(2.) ), eps99 , eps99);
// forward computation of partials w.r.t. s
v[s] = 1.;
w = f.Forward(1, v);
ok &= NearEqual(w[x], 1. / U[s], eps99 , eps99); // dx/ds
ok &= NearEqual(w[y], 1. / (U[s] * Z[x]), eps99 , eps99); // dy/ds
// reverse computation of partials of y
w[x] = 0.;
w[y] = 1.;
v = f.Reverse(1,w);
ok &= NearEqual(v[s], 1. / (U[s] * Z[x]), eps99 , eps99); // dy/ds
// forward computation of second partials w.r.t. s
v[s] = 1.;
w = f.Forward(1, v);
v[s] = 0.;
w = f.Forward(2, v);
ok &= NearEqual(
2. * w[y] ,
- 1. / (Z[x]*Z[x]*U[s]*U[s]) - 1. / (Z[x]*U[s]*U[s]),
eps99 ,
eps99
);
// reverse computation of second partials of y
CPPAD_TESTVECTOR(double) r( f.Domain() * 2 );
w[x] = 0.;
w[y] = 1.;
r = f.Reverse(2, w);
ok &= NearEqual(
r[2 * s + 1] ,
- 1. / (Z[x]*Z[x]*U[s]*U[s]) - 1. / (Z[x]*U[s]*U[s]),
eps99 ,
eps99
);
return ok;
}
bool LogTestTwo(void)
{ bool ok = true;
using CppAD::log;
using namespace CppAD;
double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
// independent variable vector
CPPAD_TESTVECTOR(AD<double>) U(1);
U[0] = 1.;
Independent(U);
// a temporary values
AD<double> x = exp(U[0]);
// dependent variable vector
CPPAD_TESTVECTOR(AD<double>) Z(1);
Z[0] = log(x); // log( exp(u) )
// create f: U -> Z and vectors used for derivative calculations
ADFun<double> f(U, Z);
CPPAD_TESTVECTOR(double) v(1);
CPPAD_TESTVECTOR(double) w(1);
// check value
ok &= NearEqual(U[0] , Z[0], eps99 , eps99);
// forward computation of partials w.r.t. u
size_t j;
size_t p = 5;
double jfac = 1.;
double value = 1.;
v[0] = 1.;
for(j = 1; j < p; j++)
{ jfac *= double(j);
w = f.Forward(j, v);
ok &= NearEqual(w[0], value/jfac, eps99, eps99); // d^jz/du^j
v[0] = 0.;
value = 0.;
}
// reverse computation of partials of Taylor coefficients
CPPAD_TESTVECTOR(double) r(p);
w[0] = 1.;
r = f.Reverse(p, w);
jfac = 1.;
value = 1.;
for(j = 0; j < p; j++)
{ ok &= NearEqual(r[j], value/jfac, eps99, eps99); // d^jz/du^j
jfac *= double(j + 1);
value = 0.;
}
return ok;
}
} // END empty namespace
bool log(void)
{ bool ok = true;
ok &= LogTestOne();
ok &= LogTestTwo();
return ok;
}
|