File: mul.cpp

package info (click to toggle)
cppad 2026.00.00.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,584 kB
  • sloc: cpp: 112,960; sh: 6,146; ansic: 179; python: 71; sed: 12; makefile: 10
file content (193 lines) | stat: -rw-r--r-- 4,903 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------

/*
Two old Mul examples now used just for valiadation testing
*/
# include <cppad/cppad.hpp>

namespace { // BEGIN empty namespace

bool zero_times_nan(void)
{  bool ok = true;

   CPPAD_TESTVECTOR( CppAD::AD<double> ) ax(2), ay(3);
   ax[0] = 0.0;
   ax[1] = 0.0;
   CppAD::Independent(ax);
   CppAD::AD<double> adiv = ax[0] / ax[1];
   //
   // the result for each of these cases should be identically zero
   ay[0] = 0.0 * adiv;
   ay[1] = adiv * 0.0;
   ay[2] = 0.0 / adiv;
   //
   CppAD::ADFun<double> f(ax, ay);
   //
   CPPAD_TESTVECTOR(double) x(2), y(3);
   x[0] = 1.0;
   x[1] = 1.0;
   y    = f.Forward(0, x);
   ok  &= y[0] == 0.0;
   ok  &= y[1] == 0.0;
   ok  &= y[2] == 0.0;

   return ok;
}

bool MulTestOne(void)
{  bool ok = true;

   using namespace CppAD;

   // independent variable vector, indices, values, and declaration
   CPPAD_TESTVECTOR(AD<double>) U(2);
   size_t s = 0;
   size_t t = 1;
   U[s]     = 3.;
   U[t]     = 2.;
   Independent(U);

   // assign some parameters
   AD<double> zero = 0.;
   AD<double> one  = 1.;

   // dependent variable vector and indices
   CPPAD_TESTVECTOR(AD<double>) Z(5);
   size_t x = 0;
   size_t y = 1;
   size_t z = 2;
   size_t u = 3;
   size_t v = 4;

   // assign the dependent variables
   Z[x] = U[s] * U[t];   // AD<double> * AD<double>
   Z[y] = Z[x] * 4.;     // AD<double> *    double
   Z[z] = 4.   * Z[y];   //    double  * AD<double>
   Z[u] =  one * Z[z];   // multiplication by parameter equal to one
   Z[v] = zero * Z[z];   // multiplication by parameter equal to zero

   // check multipilcation by zero results in a parameter
   ok &= Parameter(Z[v]);

   // create f: U -> Z and vectors used for derivative calculations
   ADFun<double> f(U, Z);
   CPPAD_TESTVECTOR(double) q( f.Domain() );
   CPPAD_TESTVECTOR(double) r( f.Range() );

   // check parameter flag
   ok &= f.Parameter(v);

   // check values
   ok &= ( Z[x] == 3. * 2. );
   ok &= ( Z[y] == 3. * 2. * 4. );
   ok &= ( Z[z] == 4. * 3. * 2. * 4. );
   ok &= ( Z[u] == Z[z] );
   ok &= ( Z[v] == 0. );

   // forward computation of partials w.r.t. s
   q[s] = 1.;
   q[t] = 0.;
   r    = f.Forward(1, q);
   ok &= ( r[x] == U[t] );           // dx/ds
   ok &= ( r[y] == U[t] * 4. );      // dy/ds
   ok &= ( r[z] == 4. * U[t] * 4. ); // dz/ds
   ok &= ( r[u] == r[z] );           // du/ds
   ok &= ( r[v] == 0. );             // dv/ds

   // reverse computation of second partials of z
   CPPAD_TESTVECTOR(double) d2( f.Domain() * 2 );
   r[x] = 0.;
   r[y] = 0.;
   r[z] = 1.;
   r[u] = 0.;
   r[v] = 0.;
   d2   = f.Reverse(2, r);

   // check second order partials
   ok &= ( d2[2 * s + 1] == 0. );             // d^2 z / (ds ds)
   ok &= ( d2[2 * t + 1] == 4. * 4. );        // d^2 z / (ds dt)

   return ok;
}

bool MulTestTwo(void)
{  bool ok = true;
   using namespace CppAD;
   double eps99 = 99.0 * std::numeric_limits<double>::epsilon();

   // independent variable vector
   double u0 = .5;
   CPPAD_TESTVECTOR(AD<double>) U(1);
   U[0]      = u0;
   Independent(U);

   AD<double> a = U[0] * 1.; // AD<double> * double
   AD<double> b = a  * 2;    // AD<double> * int
   AD<double> c = 3. * b;    // double     * AD<double>
   AD<double> d = 4  * c;    // int        * AD<double>

   // dependent variable vector
   CPPAD_TESTVECTOR(AD<double>) Z(1);
   Z[0] = U[0] * d;          // AD<double> * AD<double>

   // create f: U -> Z and vectors used for derivative calculations
   ADFun<double> f(U, Z);
   CPPAD_TESTVECTOR(double) v(1);
   CPPAD_TESTVECTOR(double) w(1);

   // check value
   ok &= NearEqual(Value(Z[0]) , u0*4*3*2*u0,  eps99 , eps99);

   // forward computation of partials w.r.t. u
   size_t j;
   size_t p     = 5;
   double jfac  = 1.;
   v[0]         = 1.;
   for(j = 1; j < p; j++)
   {  double value;
      if( j == 1 )
         value = 48. * u0;
      else if( j == 2 )
         value = 48.;
      else
         value = 0.;

      jfac *= double(j);
      w     = f.Forward(j, v);
      ok &= NearEqual(w[0], value/jfac, eps99, eps99); // d^jz/du^j
      v[0]  = 0.;
   }

   // reverse computation of partials of Taylor coefficients
   CPPAD_TESTVECTOR(double) r(p);
   w[0]  = 1.;
   r     = f.Reverse(p, w);
   jfac  = 1.;
   for(j = 0; j < p; j++)
   {  double value;
      if( j == 0 )
         value = 48. * u0;
      else if( j == 1 )
         value = 48.;
      else
         value = 0.;

      ok &= NearEqual(r[j], value/jfac, eps99, eps99); // d^jz/du^j
      jfac *= double(j + 1);
   }

   return ok;
}

} // END empty namespace

bool Mul(void)
{  bool ok = true;
   ok &= MulTestOne();
   ok &= MulTestTwo();
   ok &= zero_times_nan();
   return ok;
}