1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
Two old Mul examples now used just for valiadation testing
*/
# include <cppad/cppad.hpp>
namespace { // BEGIN empty namespace
bool zero_times_nan(void)
{ bool ok = true;
CPPAD_TESTVECTOR( CppAD::AD<double> ) ax(2), ay(3);
ax[0] = 0.0;
ax[1] = 0.0;
CppAD::Independent(ax);
CppAD::AD<double> adiv = ax[0] / ax[1];
//
// the result for each of these cases should be identically zero
ay[0] = 0.0 * adiv;
ay[1] = adiv * 0.0;
ay[2] = 0.0 / adiv;
//
CppAD::ADFun<double> f(ax, ay);
//
CPPAD_TESTVECTOR(double) x(2), y(3);
x[0] = 1.0;
x[1] = 1.0;
y = f.Forward(0, x);
ok &= y[0] == 0.0;
ok &= y[1] == 0.0;
ok &= y[2] == 0.0;
return ok;
}
bool MulTestOne(void)
{ bool ok = true;
using namespace CppAD;
// independent variable vector, indices, values, and declaration
CPPAD_TESTVECTOR(AD<double>) U(2);
size_t s = 0;
size_t t = 1;
U[s] = 3.;
U[t] = 2.;
Independent(U);
// assign some parameters
AD<double> zero = 0.;
AD<double> one = 1.;
// dependent variable vector and indices
CPPAD_TESTVECTOR(AD<double>) Z(5);
size_t x = 0;
size_t y = 1;
size_t z = 2;
size_t u = 3;
size_t v = 4;
// assign the dependent variables
Z[x] = U[s] * U[t]; // AD<double> * AD<double>
Z[y] = Z[x] * 4.; // AD<double> * double
Z[z] = 4. * Z[y]; // double * AD<double>
Z[u] = one * Z[z]; // multiplication by parameter equal to one
Z[v] = zero * Z[z]; // multiplication by parameter equal to zero
// check multipilcation by zero results in a parameter
ok &= Parameter(Z[v]);
// create f: U -> Z and vectors used for derivative calculations
ADFun<double> f(U, Z);
CPPAD_TESTVECTOR(double) q( f.Domain() );
CPPAD_TESTVECTOR(double) r( f.Range() );
// check parameter flag
ok &= f.Parameter(v);
// check values
ok &= ( Z[x] == 3. * 2. );
ok &= ( Z[y] == 3. * 2. * 4. );
ok &= ( Z[z] == 4. * 3. * 2. * 4. );
ok &= ( Z[u] == Z[z] );
ok &= ( Z[v] == 0. );
// forward computation of partials w.r.t. s
q[s] = 1.;
q[t] = 0.;
r = f.Forward(1, q);
ok &= ( r[x] == U[t] ); // dx/ds
ok &= ( r[y] == U[t] * 4. ); // dy/ds
ok &= ( r[z] == 4. * U[t] * 4. ); // dz/ds
ok &= ( r[u] == r[z] ); // du/ds
ok &= ( r[v] == 0. ); // dv/ds
// reverse computation of second partials of z
CPPAD_TESTVECTOR(double) d2( f.Domain() * 2 );
r[x] = 0.;
r[y] = 0.;
r[z] = 1.;
r[u] = 0.;
r[v] = 0.;
d2 = f.Reverse(2, r);
// check second order partials
ok &= ( d2[2 * s + 1] == 0. ); // d^2 z / (ds ds)
ok &= ( d2[2 * t + 1] == 4. * 4. ); // d^2 z / (ds dt)
return ok;
}
bool MulTestTwo(void)
{ bool ok = true;
using namespace CppAD;
double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
// independent variable vector
double u0 = .5;
CPPAD_TESTVECTOR(AD<double>) U(1);
U[0] = u0;
Independent(U);
AD<double> a = U[0] * 1.; // AD<double> * double
AD<double> b = a * 2; // AD<double> * int
AD<double> c = 3. * b; // double * AD<double>
AD<double> d = 4 * c; // int * AD<double>
// dependent variable vector
CPPAD_TESTVECTOR(AD<double>) Z(1);
Z[0] = U[0] * d; // AD<double> * AD<double>
// create f: U -> Z and vectors used for derivative calculations
ADFun<double> f(U, Z);
CPPAD_TESTVECTOR(double) v(1);
CPPAD_TESTVECTOR(double) w(1);
// check value
ok &= NearEqual(Value(Z[0]) , u0*4*3*2*u0, eps99 , eps99);
// forward computation of partials w.r.t. u
size_t j;
size_t p = 5;
double jfac = 1.;
v[0] = 1.;
for(j = 1; j < p; j++)
{ double value;
if( j == 1 )
value = 48. * u0;
else if( j == 2 )
value = 48.;
else
value = 0.;
jfac *= double(j);
w = f.Forward(j, v);
ok &= NearEqual(w[0], value/jfac, eps99, eps99); // d^jz/du^j
v[0] = 0.;
}
// reverse computation of partials of Taylor coefficients
CPPAD_TESTVECTOR(double) r(p);
w[0] = 1.;
r = f.Reverse(p, w);
jfac = 1.;
for(j = 0; j < p; j++)
{ double value;
if( j == 0 )
value = 48. * u0;
else if( j == 1 )
value = 48.;
else
value = 0.;
ok &= NearEqual(r[j], value/jfac, eps99, eps99); // d^jz/du^j
jfac *= double(j + 1);
}
return ok;
}
} // END empty namespace
bool Mul(void)
{ bool ok = true;
ok &= MulTestOne();
ok &= MulTestTwo();
ok &= zero_times_nan();
return ok;
}
|