File: mul_cond_rev.cpp

package info (click to toggle)
cppad 2026.00.00.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,584 kB
  • sloc: cpp: 112,960; sh: 6,146; ansic: 179; python: 71; sed: 12; makefile: 10
file content (213 lines) | stat: -rw-r--r-- 7,397 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
Test of multi-level conditional expressions reverse mode
*/

# include <cppad/cppad.hpp>

bool mul_cond_rev(void)
{
   bool ok = true;
   using CppAD::vector;
   using CppAD::NearEqual;
   double eps = 10. * std::numeric_limits<double>::epsilon();
   //
   typedef CppAD::AD<double>   a1double;
   typedef CppAD::AD<a1double> a2double;
   //
   a1double a1zero = 0.0;
   a2double a2zero = a1zero;
   a1double a1one  = 1.0;
   a2double a2one  = a1one;
   //
   // --------------------------------------------------------------------
   // create a1f = f(x)
   size_t n = 1;
   size_t m = 25;
   //
   vector<a2double> a2x(n), a2y(m);
   a2x[0] = a2double( 5.0 );
   Independent(a2x);
   //
   size_t i = 0;
   // variable that is greater than one when x[0] is zero
   // and less than one when x[0] is 1.0 or greater
   a2double a2switch  = a2one / (a2x[0] + a2double(0.5));
   // variable that is infinity when x[0] is zero
   // and a normal number when x[0] is 1.0 or greater
   a2double a2inf_var = a2one / a2x[0];
   // variable that is nan when x[0] is zero
   // and a normal number when x[0] is 1.0 or greater
   a2double a2nan_var = ( a2one / a2inf_var ) / a2x[0];
   // variable that is one when x[0] is zero
   // and less then one when x[0] is 1.0 or greater
   a2double a2one_var = a2one / ( a2one + a2x[0] );
   // div
   a2y[i++]  = CondExpGt(a2x[0], a2zero, a2nan_var, a2zero);
   // abs
   a2y[i++]  = CondExpGt(a2x[0], a2zero, fabs( a2y[0] ), a2zero);
   // add
   a2y[i++]  = CondExpGt(a2x[0], a2zero, a2nan_var + a2nan_var, a2zero);
   // acos
   a2y[i++]  = CondExpGt(a2x[0], a2zero, acos(a2switch), a2zero);
   // asin
   a2y[i++]  = CondExpGt(a2x[0], a2zero, asin(a2switch), a2zero);
   // atan
   a2y[i++]  = CondExpGt(a2x[0], a2zero, atan(a2nan_var), a2zero);
   // cos
   a2y[i++]  = CondExpGt(a2x[0], a2zero, cos(a2nan_var), a2zero);
   // cosh
   a2y[i++]  = CondExpGt(a2x[0], a2zero, cosh(a2nan_var), a2zero);
   // exp
   a2y[i++]  = CondExpGt(a2x[0], a2zero, exp(a2nan_var), a2zero);
   // log
   a2y[i++]  = CondExpGt(a2x[0], a2zero, log(a2x[0]), a2zero);
   // mul
   a2y[i++]  = CondExpGt(a2x[0], a2zero, a2x[0] * a2inf_var, a2zero);
   // pow
   a2y[i++]  = CondExpGt(a2x[0], a2zero, pow(a2inf_var, a2x[0]), a2zero);
   // sin
   a2y[i++]  = CondExpGt(a2x[0], a2zero, sin(a2nan_var), a2zero);
   // sinh
   a2y[i++]  = CondExpGt(a2x[0], a2zero, sinh(a2nan_var), a2zero);
   // sqrt
   a2y[i++]  = CondExpGt(a2x[0], a2zero, sqrt(a2x[0]), a2zero);
   // sub
   a2y[i++]  = CondExpGt(a2x[0], a2zero, a2inf_var - a2nan_var, a2zero);
   // tan
   a2y[i++]  = CondExpGt(a2x[0], a2zero, tan(a2nan_var), a2zero);
   // tanh
   a2y[i++]  = CondExpGt(a2x[0], a2zero, tanh(a2nan_var), a2zero);
   // azmul
   a2y[i++]  = CondExpGt(a2x[0], a2zero, azmul(a2x[0], a2inf_var), a2zero);
   //
   // Operations that are C+11 atomic
   //
   // acosh
   a2y[i++]  = CondExpGt(a2x[0], a2zero, acosh( a2x[0] ), a2zero);
   // asinh
   a2y[i++]  = CondExpGt(a2x[0], a2zero, asinh( a2nan_var ), a2zero);
   // atanh
   a2y[i++]  = CondExpGt(a2x[0], a2zero, atanh( a2one_var ), a2zero);
   // erf
   a2y[i++]  = CondExpGt(a2x[0], a2zero, erf( a2nan_var ), a2zero);
   // expm1
   a2y[i++]  = CondExpGt(a2x[0], a2zero, expm1(a2nan_var), a2zero);
   // log1p
   a2y[i++]  = CondExpGt(a2x[0], a2zero, log1p(- a2one_var ), a2zero);
   //
   ok &= i == m;
   CppAD::ADFun<a1double> a1f;
   a1f.Dependent(a2x, a2y);
   // --------------------------------------------------------------------
   // create h = f(x)
   vector<a1double> a1x(n), a1y(m);
   a1x[0] = 5.0;
   //
   Independent(a1x);
   i = 0;
   a1double a1switch  = a1one / (a1x[0] + a1double(0.5));
   a1double a1inf_var = a1one / a1x[0];
   a1double a1nan_var = ( a1one / a1inf_var ) / a1x[0];
   a1double a1one_var = a1one / ( a1one + a1x[0] );
   // div
   a1y[i++]  = CondExpGt(a1x[0], a1zero, a1nan_var, a1zero);
   // abs
   a1y[i++]  = CondExpGt(a1x[0], a1zero, fabs( a1y[0] ), a1zero);
   // add
   a1y[i++]  = CondExpGt(a1x[0], a1zero, a1nan_var + a1nan_var, a1zero);
   // acos
   a1y[i++]  = CondExpGt(a1x[0], a1zero, acos(a1switch), a1zero);
   // asin
   a1y[i++]  = CondExpGt(a1x[0], a1zero, asin(a1switch), a1zero);
   // atan
   a1y[i++]  = CondExpGt(a1x[0], a1zero, atan(a1nan_var), a1zero);
   // cos
   a1y[i++]  = CondExpGt(a1x[0], a1zero, cos(a1nan_var), a1zero);
   // cosh
   a1y[i++]  = CondExpGt(a1x[0], a1zero, cosh(a1nan_var), a1zero);
   // exp
   a1y[i++]  = CondExpGt(a1x[0], a1zero, exp(a1nan_var), a1zero);
   // log
   a1y[i++]  = CondExpGt(a1x[0], a1zero, log(a1x[0]), a1zero);
   // mul
   a1y[i++]  = CondExpGt(a1x[0], a1zero, a1x[0] * a1inf_var, a1zero);
   // pow
   a1y[i++]  = CondExpGt(a1x[0], a1zero, pow(a1inf_var, a1x[0]), a1zero);
   // sin
   a1y[i++]  = CondExpGt(a1x[0], a1zero, sin(a1nan_var), a1zero);
   // sinh
   a1y[i++]  = CondExpGt(a1x[0], a1zero, sinh(a1nan_var), a1zero);
   // sqrt
   a1y[i++]  = CondExpGt(a1x[0], a1zero, sqrt(a1x[0]), a1zero);
   // sub
   a1y[i++]  = CondExpGt(a1x[0], a1zero, a1inf_var - a1nan_var, a1zero);
   // tan
   a1y[i++]  = CondExpGt(a1x[0], a1zero, tan(a1nan_var), a1zero);
   // tanh
   a1y[i++]  = CondExpGt(a1x[0], a1zero, tanh(a1nan_var), a1zero);
   // azmul
   a1y[i++]  = CondExpGt(a1x[0], a1zero, azmul(a1x[0], a1inf_var), a1zero);
   //
   // Operations that are C+11 atomic
   //
   // acosh
   a1y[i++]  = CondExpGt(a1x[0], a1zero, acosh( a1x[0] ), a1zero);
   // asinh
   a1y[i++]  = CondExpGt(a1x[0], a1zero, asinh( a1nan_var ), a1zero);
   // atanh
   a1y[i++]  = CondExpGt(a1x[0], a1zero, atanh( a1one_var ), a1zero);
   // erf
   a1y[i++]  = CondExpGt(a1x[0], a1zero, erf( a1nan_var ), a1zero);
   // expm1
   a1y[i++]  = CondExpGt(a1x[0], a1zero, expm1(a1nan_var), a1zero);
   // log1p
   a1y[i++]  = CondExpGt(a1x[0], a1zero, log1p(- a1one_var ), a1zero);
   //
   ok &= i == m;
   CppAD::ADFun<double> h;
   h.Dependent(a1x, a1y);
   // --------------------------------------------------------------------
   // create g = f'(x)
   vector<a1double> a1dy(m), a1w(m);
   a1x[0] = 2.0;
   for(i = 0; i < m; i++)
      a1w[i] = 0.0;
   //
   Independent(a1x);
   a1f.Forward(0, a1x);
   //
   for(i = 0; i < m; i++)
   {  a1w[i] = 1.0;
      vector<a1double> dyi_dx = a1f.Reverse(1, a1w);
      a1dy[i] = dyi_dx[0];
      a1w[i] = 0.0;
   }
   CppAD::ADFun<double> g; // g uses reverse mode derivatives
   g.Dependent(a1x, a1dy);
   // --------------------------------------------------------------------
   // check case where x[0] > 0
   vector<double> x(1), dx(1), dg(m), dh(m);
   x[0]  = 2.0;
   dx[0] = 1.0;
   h.Forward(0, x);
   dh   = h.Forward(1, dx); // dh uses forward mode derivatives
   dg   = g.Forward(0, x);
   for(i = 0; i < m; i++)
      ok  &= NearEqual(dg[i], dh[i], eps, eps);
   // --------------------------------------------------------------------
   // check case where x[0] = 0
   x[0] = 0.0;
   dg   = g.Forward(0, x);
   h.Forward(0, x);
   dh   = h.Forward(1, dx);
   for(i = 0; i < m; i++)
   {  ok  &= dg[i] == 0.0;
      ok  &= dh[i] == 0.0;
   }
   // --------------------------------------------------------------------
   return ok;
}