1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
Two old MulEq examples now used just for valiadation testing
*/
# include <cppad/cppad.hpp>
namespace { // BEGIN empty namespace
bool MulEqTestOne(void)
{ bool ok = true;
using namespace CppAD;
// independent variable vector, indices, values, and declaration
CPPAD_TESTVECTOR(AD<double>) U(2);
size_t s = 0;
size_t t = 1;
U[s] = 3.;
U[t] = 2.;
Independent(U);
// dependent variable vector and indices
CPPAD_TESTVECTOR(AD<double>) Z(2);
size_t x = 0;
size_t y = 1;
// some initial values
AD<double> zero = 0.;
AD<double> one = 1.;
// dependent variable values
Z[x] = U[s];
Z[y] = U[t];
Z[x] *= U[t]; // AD<double> *= AD<double>
Z[y] *= 5.; // AD<double> *= double
zero *= Z[x];
one *= Z[x];
// check that zero is a parameter
ok &= Parameter(zero);
// create f: U -> Z and vectors used for derivative calculations
ADFun<double> f(U, Z);
CPPAD_TESTVECTOR(double) v( f.Domain() );
CPPAD_TESTVECTOR(double) w( f.Range() );
// check values
ok &= ( Z[x] == 3. * 2. );
ok &= ( Z[y] == 2. * 5. );
ok &= ( zero == 0. );
ok &= ( one == Z[x] );
// forward computation of partials w.r.t. t
v[s] = 0.;
v[t] = 1.;
w = f.Forward(1, v);
ok &= ( w[x] == U[s] ); // dx/dt
ok &= ( w[y] == 5. ); // dy/dt
// reverse computation of second partials of x
CPPAD_TESTVECTOR(double) r( f.Domain() * 2 );
w[x] = 1.;
w[y] = 0.;
r = f.Reverse(2, w);
ok &= ( r[2 * s + 1] == 1. );
ok &= ( r[2 * t + 1] == 0. );
return ok;
}
bool MulEqTestTwo(void)
{ bool ok = true;
using namespace CppAD;
double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
// independent variable vector
double u0 = .5;
CPPAD_TESTVECTOR(AD<double>) U(1);
U[0] = u0;
Independent(U);
// dependent variable vector
CPPAD_TESTVECTOR(AD<double>) Z(1);
Z[0] = U[0]; // initial value
Z[0] *= 2; // AD<double> *= int
Z[0] *= 4.; // AD<double> *= double
Z[0] *= U[0]; // AD<double> *= AD<double>
// create f: U -> Z and vectors used for derivative calculations
ADFun<double> f(U, Z);
CPPAD_TESTVECTOR(double) v(1);
CPPAD_TESTVECTOR(double) w(1);
// check value
ok &= NearEqual(Z[0] , u0*2*4*u0, eps99 , eps99);
// forward computation of partials w.r.t. u
size_t j;
size_t p = 5;
double jfac = 1.;
v[0] = 1.;
for(j = 1; j < p; j++)
{ double value;
if( j == 1 )
value = 16. * u0;
else if( j == 2 )
value = 16.;
else
value = 0.;
jfac *= double(j);
w = f.Forward(j, v);
ok &= NearEqual(w[0], value/jfac, eps99, eps99); // d^jz/du^j
v[0] = 0.;
}
// reverse computation of partials of Taylor coefficients
CPPAD_TESTVECTOR(double) r(p);
w[0] = 1.;
r = f.Reverse(p, w);
jfac = 1.;
for(j = 0; j < p; j++)
{ double value;
if( j == 0 )
value = 16. * u0;
else if( j == 1 )
value = 16.;
else
value = 0.;
ok &= NearEqual(r[j], value/jfac, eps99, eps99); // d^jz/du^j
jfac *= double(j + 1);
}
return ok;
}
} // END empty namespace
bool MulEq(void)
{ bool ok = true;
ok &= MulEqTestOne();
ok &= MulEqTestTwo();
return ok;
}
|