File: mul_eq.cpp

package info (click to toggle)
cppad 2026.00.00.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,584 kB
  • sloc: cpp: 112,960; sh: 6,146; ansic: 179; python: 71; sed: 12; makefile: 10
file content (149 lines) | stat: -rw-r--r-- 3,595 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------

/*
Two old MulEq examples now used just for valiadation testing
*/
# include <cppad/cppad.hpp>

namespace { // BEGIN empty namespace

bool MulEqTestOne(void)
{  bool ok = true;

   using namespace CppAD;

   // independent variable vector, indices, values, and declaration
   CPPAD_TESTVECTOR(AD<double>) U(2);
   size_t s = 0;
   size_t t = 1;
   U[s]     = 3.;
   U[t]     = 2.;
   Independent(U);

   // dependent variable vector and indices
   CPPAD_TESTVECTOR(AD<double>) Z(2);
   size_t x = 0;
   size_t y = 1;

   // some initial values
   AD<double> zero = 0.;
   AD<double> one  = 1.;

   // dependent variable values
   Z[x]  = U[s];
   Z[y]  = U[t];
   Z[x] *= U[t];  // AD<double> *= AD<double>
   Z[y] *= 5.;    // AD<double> *= double
   zero *= Z[x];
   one  *= Z[x];

   // check that zero is a parameter
   ok &= Parameter(zero);

   // create f: U -> Z and vectors used for derivative calculations
   ADFun<double> f(U, Z);
   CPPAD_TESTVECTOR(double) v( f.Domain() );
   CPPAD_TESTVECTOR(double) w( f.Range() );

   // check values
   ok &= ( Z[x] == 3. * 2. );
   ok &= ( Z[y] == 2. * 5. );
   ok &= ( zero == 0. );
   ok &= ( one == Z[x] );

   // forward computation of partials w.r.t. t
   v[s] = 0.;
   v[t] = 1.;
   w    = f.Forward(1, v);
   ok &= ( w[x] == U[s] );  // dx/dt
   ok &= ( w[y] == 5. );    // dy/dt

   // reverse computation of second partials of x
   CPPAD_TESTVECTOR(double) r( f.Domain() * 2 );
   w[x] = 1.;
   w[y] = 0.;
   r    = f.Reverse(2, w);
   ok &= ( r[2 * s + 1] == 1. );
   ok &= ( r[2 * t + 1] == 0. );

   return ok;
}

bool MulEqTestTwo(void)
{  bool ok = true;
   using namespace CppAD;
   double eps99 = 99.0 * std::numeric_limits<double>::epsilon();

   // independent variable vector
   double u0 = .5;
   CPPAD_TESTVECTOR(AD<double>) U(1);
   U[0]      = u0;
   Independent(U);

   // dependent variable vector
   CPPAD_TESTVECTOR(AD<double>) Z(1);
   Z[0] = U[0];       // initial value
   Z[0] *= 2;         // AD<double> *= int
   Z[0] *= 4.;        // AD<double> *= double
   Z[0] *= U[0];      // AD<double> *= AD<double>

   // create f: U -> Z and vectors used for derivative calculations
   ADFun<double> f(U, Z);
   CPPAD_TESTVECTOR(double) v(1);
   CPPAD_TESTVECTOR(double) w(1);

   // check value
   ok &= NearEqual(Z[0] , u0*2*4*u0,  eps99 , eps99);

   // forward computation of partials w.r.t. u
   size_t j;
   size_t p     = 5;
   double jfac  = 1.;
   v[0]         = 1.;
   for(j = 1; j < p; j++)
   {  double value;
      if( j == 1 )
         value = 16. * u0;
      else if( j == 2 )
         value = 16.;
      else
         value = 0.;

      jfac *= double(j);
      w     = f.Forward(j, v);
      ok &= NearEqual(w[0], value/jfac, eps99, eps99); // d^jz/du^j
      v[0]  = 0.;
   }

   // reverse computation of partials of Taylor coefficients
   CPPAD_TESTVECTOR(double) r(p);
   w[0]  = 1.;
   r     = f.Reverse(p, w);
   jfac  = 1.;
   for(j = 0; j < p; j++)
   {  double value;
      if( j == 0 )
         value = 16. * u0;
      else if( j == 1 )
         value = 16.;
      else
         value = 0.;

      ok &= NearEqual(r[j], value/jfac, eps99, eps99); // d^jz/du^j
      jfac *= double(j + 1);
   }

   return ok;
}

} // END empty namespace

bool MulEq(void)
{  bool ok = true;
   ok &= MulEqTestOne();
   ok &= MulEqTestTwo();
   return ok;
}