1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
old num_limits.cpp example / test
$spell
$$
$section Numeric Limits: Example and Test$$
$index limits$$
$index example, limits$$
$index test, limits$$
$head Assumption$$
This code assumes that the decimal point is infront of the mantissa.
Hence dividing the minimum normalized value looses precision,
while multiplying the maximum normalized value results in infinity.
$head Externals$$
This example using external routines to get and set values
so that the compiler does not set the correspdong code and optimize
it out.
old verbatim%example/num_limits.cpp%0%// BEGIN C++%// END C++%1%$$
$end
*/
// BEGIN C++
// Complex examples should suppress conversion warnings
# include <cppad/wno_conversion.hpp>
# ifdef _MSC_VER
// Suppress Microsoft compiler warning about possible loss of precision,
// in the constructors (when converting to std::complex<float>)
// Type one = 1
// Type two = 2
// 1 and 2 are small enough so no loss of precision when converting to float.
# pragma warning(disable:4244)
# endif
# include <cppad/cppad.hpp>
# include <complex>
# include "extern_value.hpp"
namespace {
using CppAD::vector;
using CppAD::abs_geq;
template <class Type>
Type add_one(const Type& value)
{ return( Type(1) + value ); }
// -----------------------------------------------------------------
template <class Type>
bool check_epsilon(void)
{ bool ok = true;
typedef extern_value<Type> value;
value eps( CppAD::numeric_limits<Type>::epsilon() );
value one( Type(1) );
value two( Type(2) );
value tmp( Type(0) );
//
tmp.set( add_one( eps.get() / two.get() ) );
ok &= one.get() == tmp.get();
//
tmp.set( add_one( eps.get() ) );
ok &= one.get() != tmp.get();
return ok;
}
// -----------------------------------------------------------------
template <class Type>
bool check_min(void)
{ bool ok = true;
typedef extern_value<Type> value;
value min( CppAD::numeric_limits<Type>::min() );
value eps3( Type(3) * CppAD::numeric_limits<Type>::epsilon() );
value one( Type(1) );
value hun( Type(100) );
value tmp( Type(0) );
//
tmp.set( min.get() / hun.get() );
tmp.set( tmp.get() * hun.get() );
ok &= abs_geq(tmp.get()/min.get() - one.get(), eps3.get());
//
tmp.set( min.get() * hun.get() );
tmp.set( tmp.get() / hun.get() );
ok &= ! abs_geq(tmp.get()/min.get() - one.get(), eps3.get());
return ok;
}
// -----------------------------------------------------------------
template <class Type>
bool check_max(void)
{ bool ok = true;
typedef extern_value<Type> value;
value max2( CppAD::numeric_limits<Type>::max() / Type(2) );
value eps3( Type(3) * CppAD::numeric_limits<Type>::epsilon() );
value one( Type(1) );
value hun( Type(100) );
value tmp( Type(0) );
// In complex case, this operation can result in (inf, 0)
tmp.set( max2.get() * hun.get() );
// In complex case, this operaiotn can result in (inf,-nan)
// (where nan corresponds to inf * 0)
tmp.set( tmp.get() / hun.get() );
if( ! CppAD::isnan( tmp.get() ) ) ok &= abs_geq(
tmp.get() / max2.get() - one.get(), eps3.get()
);
//
tmp.set( max2.get() / hun.get() );
tmp.set( tmp.get() * hun.get() );
ok &= ! abs_geq(tmp.get() / max2.get() - one.get(), eps3.get() );
return ok;
}
// -----------------------------------------------------------------
template <class Type>
bool check_quiet_NaN(void)
{ bool ok = true;
typedef extern_value<Type> value;
value nan( CppAD::numeric_limits<Type>::quiet_NaN() );
value same( nan.get() );
//
ok &= nan.get() != same.get();
ok &= ! (nan.get() == same.get() );
//
return ok;
}
// -----------------------------------------------------------------
template <class Type>
bool check_infinity(void)
{ bool ok = true;
typedef extern_value<Type> value;
value inf( CppAD::numeric_limits<Type>::infinity() );
value hun( Type(100) );
value tmp( Type(0) );
tmp.set( inf.get() + hun.get() );
ok &= inf.get() == tmp.get();
tmp.set( inf.get() - inf.get() );
ok &= CppAD::isnan( tmp.get() );
return ok;
}
}
bool num_limits(void)
{ bool ok = true;
using CppAD::AD;
// -------------------------------------------------------------------
// epsilon for Base types defined by CppAD
ok &= check_epsilon<float>();
ok &= check_epsilon<double>();
ok &= check_epsilon< std::complex<float> >();
ok &= check_epsilon< std::complex<double> >();
// epsilon for some AD types.
ok &= check_epsilon< AD<float> >();
ok &= check_epsilon< AD<double> >();
ok &= check_epsilon< AD<std::complex<float> > >();
ok &= check_epsilon< AD<std::complex<double> > >();
// -------------------------------------------------------------------
// min for Base types defined by CppAD
ok &= check_min<float>();
ok &= check_min<double>();
ok &= check_min< std::complex<float> >();
ok &= check_min< std::complex<double> >();
// min for some AD types.
ok &= check_min< AD<float> >();
ok &= check_min< AD<double> >();
ok &= check_min< AD<std::complex<float> > >();
ok &= check_min< AD<std::complex<double> > >();
// -------------------------------------------------------------------
// max for Base types defined by CppAD
ok &= check_max<float>();
ok &= check_max<double>();
ok &= check_max< std::complex<float> >();
ok &= check_max< std::complex<double> >();
// max for some AD types.
ok &= check_max< AD<float> >();
ok &= check_max< AD<double> >();
ok &= check_max< AD< std::complex<float> > >();
ok &= check_max< AD< std::complex<double> > >();
// -------------------------------------------------------------------
// quiet_NaN for Base types defined by CppAD
ok &= check_quiet_NaN<float>();
ok &= check_quiet_NaN<double>();
ok &= check_quiet_NaN< std::complex<float> >();
ok &= check_quiet_NaN< std::complex<double> >();
// quiet_NaN for some AD types.
ok &= check_quiet_NaN< AD<float> >();
ok &= check_quiet_NaN< AD<double> >();
ok &= check_quiet_NaN< AD< std::complex<float> > >();
ok &= check_quiet_NaN< AD< std::complex<double> > >();
// -------------------------------------------------------------------
// infinity for Base types defined by CppAD
ok &= check_infinity<float>();
ok &= check_infinity<double>();
ok &= check_infinity< std::complex<float> >();
ok &= check_infinity< std::complex<double> >();
// infinity for some AD types.
ok &= check_infinity< AD<float> >();
ok &= check_infinity< AD<double> >();
ok &= check_infinity< AD< std::complex<float> > >();
ok &= check_infinity< AD< std::complex<double> > >();
return ok;
}
// END C++
|