File: runge_45.cpp

package info (click to toggle)
cppad 2026.00.00.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,584 kB
  • sloc: cpp: 112,960; sh: 6,146; ansic: 179; python: 71; sed: 12; makefile: 10
file content (142 lines) | stat: -rw-r--r-- 3,697 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------

/*
Old OdeRunge example now used just for valiadation testing of Runge45
*/

# include <cppad/cppad.hpp>
# include <iostream>
# include <cassert>

namespace { // BEGIN Empty namespace
   class TestFun {
   public:
      TestFun(const CPPAD_TESTVECTOR(CppAD::AD<double>) &w_)
      {  w.resize( w_.size() );
         w = w_;
      }
      void Ode(
         const CppAD::AD<double>                      &t,
         const CPPAD_TESTVECTOR(CppAD::AD<double>) &x,
         CPPAD_TESTVECTOR(CppAD::AD<double>)       &f)
      {
         using CppAD::exp;

         size_t n = x.size();

         size_t i;
         f[0]  = 0.;
         for(i = 1; i < n-1; i++)
            f[i] = w[i] * x[i-1];

         f[n-1] = x[0] * x[1];
      }
   private:
      CPPAD_TESTVECTOR(CppAD::AD<double>) w;
   };
} // END Empty namespace

bool Runge45(void)
{  bool ok = true;

   using namespace CppAD;
   using CppAD::NearEqual;
   double eps99 = 99.0 * std::numeric_limits<double>::epsilon();

   size_t i;
   size_t j;
   size_t k;

   size_t n = 6;
   size_t m = n - 1;

   CPPAD_TESTVECTOR(AD<double>) x(n);
   AD<double>                t0    = 0.;
   AD<double>                t1    = 2.;
   size_t                    nstep = 2;

   // vector of independent variables
   CPPAD_TESTVECTOR(AD<double>) w(m);
   for(i = 0; i < m; i++)
      w[i] = double(i);
   Independent(w);

   // construct function object using independent variables
   TestFun fun(w);

   // initial value of x
   CPPAD_TESTVECTOR(AD<double>) x0(n);
   for(i = 0; i < n; i++)
      x0[i] = 0.;
   x0[0] = exp( w[0] );

   // solve the differential equation
   x = Runge45(fun, nstep, t0, t1, x0);

   // create f : w -> x and vectors for evaluating derivatives
   ADFun<double> f(w, x);
   CPPAD_TESTVECTOR(double) q( f.Domain() );
   CPPAD_TESTVECTOR(double) r( f.Range() );

   // for i < n-1,
   // x[i](2) = exp( w[0] ) * (w[1] / 1) * ... * (w[i] / i) * 2^i
   AD<double> xi2 = exp(w[0]);
   for(i = 0; i < n-1; i++)
   {  ok &= NearEqual(x[i],  xi2, eps99, eps99);
      if( i < n-2 )
         xi2 *= w[i+1] * 2. / double(i+1);
   }

   // x[n-1](2) = exp(2 * w[0]) * w[1] * 2^2 / 2
   xi2 = exp(2. * w[0]) * w[1] * 2.;
   ok &= NearEqual(x[n-1], xi2, eps99, eps99);

   // the partial of x[i](2) with respect to w[j] is
   //    x[i](2) / w[j] if 0 < j <= i < n-1
   //    x[i](2)        if j == 0 and i < n-1
   //    2*x[i](2)      if j == 0 and i = n-1
   //    x[i](2) / w[j] if j == 1 and i = n-1
   //    zero           otherwise

   for(i = 0; i < n-1; i++)
   {  // compute partials of x[i]
      for(k = 0; k < n; k++)
         r[k] = 0.;
      r[i] = 1.;
      q    = f.Reverse(1,r);

      for(j = 0; j < m; j++)
      {  // check partial of x[i] w.r.t w[j]
         if (j == 0 )
            ok &= NearEqual(q[j], x[i], eps99, eps99);
         else if( j <= i  )
            ok &= NearEqual(
               q[j], x[i]/w[j], 1e-14, 1e-14);
         else
            ok &= NearEqual(q[j], 0., eps99, eps99);
      }
   }

   // compute partials of x[n-1]
   i = n-1;
   for(k = 0; k < n; k++)
      r[k] = 0.;
   r[i] = 1.;
   q    = f.Reverse(1,r);

   for(j = 0; j < m; j++)
   {  // check partial of x[n-1] w.r.t w[j]
      if (j == 0 )
         ok &= NearEqual(q[j], 2.*x[i], eps99, eps99);
      else if( j == 1  )
         ok &= NearEqual(
            q[j], x[i]/w[1], 1e-14, 1e-14);
      else
         ok &= NearEqual(q[j], 0., eps99, eps99);
   }

   return ok;
}