1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
Old example now just used for validation testing.
*/
# include <cppad/cppad.hpp>
bool Sinh(void)
{ bool ok = true;
using CppAD::sinh;
using CppAD::cosh;
using namespace CppAD;
double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
// independent variable vector
CPPAD_TESTVECTOR(AD<double>) U(1);
U[0] = 1.;
Independent(U);
// dependent variable vector
CPPAD_TESTVECTOR(AD<double>) Z(1);
Z[0] = sinh(U[0]);
// create f: U -> Z and vectors used for derivative calculations
ADFun<double> f(U, Z);
CPPAD_TESTVECTOR(double) v(1);
CPPAD_TESTVECTOR(double) w(1);
// check value
double sin_u = sinh( Value(U[0]) );
double cos_u = cosh( Value(U[0]) );
ok &= NearEqual(sin_u, Value(Z[0]), eps99 , eps99);
// forward computation of partials w.r.t. u
size_t j;
size_t p = 5;
double jfac = 1.;
v[0] = 1.;
for(j = 1; j < p; j++)
{ w = f.Forward(j, v);
double value;
if( j % 2 == 1 )
value = cos_u;
else
value = sin_u;
jfac *= double(j);
ok &= NearEqual(w[0], value/jfac, eps99, eps99); // d^jz/du^j
v[0] = 0.;
}
// reverse computation of partials of Taylor coefficients
CPPAD_TESTVECTOR(double) r(p);
w[0] = 1.;
r = f.Reverse(p, w);
jfac = 1.;
for(j = 0; j < p; j++)
{
double value;
if( j % 2 == 0 )
value = cos_u;
else
value = sin_u;
ok &= NearEqual(r[j], value/jfac, eps99, eps99); // d^jz/du^j
jfac *= double(j + 1);
}
return ok;
}
|