File: sparse_hessian.cpp

package info (click to toggle)
cppad 2026.00.00.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,584 kB
  • sloc: cpp: 112,960; sh: 6,146; ansic: 179; python: 71; sed: 12; makefile: 10
file content (254 lines) | stat: -rw-r--r-- 7,116 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-24 Bradley M. Bell
// ----------------------------------------------------------------------------

/*
Old SparseHessian example
*/

# include <cppad/cppad.hpp>
namespace { // ---------------------------------------------------------

bool rc_tridiagonal(void)
{  bool ok = true;
   using CppAD::AD;
   using CppAD::NearEqual;
   size_t i, j, k, ell;
   double eps10 = 10. * CppAD::epsilon<double>();

   size_t n = 12; // must be greater than or equal 3; see n_sweep.
   size_t m = n - 1;
   CPPAD_TESTVECTOR(AD<double>) a_x(n), a_y(m);
   CPPAD_TESTVECTOR(double) x(n), check(n * n), w(m);
   for(j = 0; j < n; j++)
      a_x[j] = x[j] = double(j+1);

   // declare independent variables and start taping
   CppAD::Independent(a_x);

   for(ell = 0; ell < n * n; ell++)
      check[ell] = 0.0;

   for(i = 0; i < m; i++)
   {  AD<double> diff = a_x[i+1] - a_x[i];
      a_y[i] = 0.5 * diff * diff / double(i+2);
      w[i] = double(i+1);
      ell         = i * n + i;
      check[ell] += w[i] / double(i+2);
      ell         = (i+1) * n + i+1;
      check[ell] += w[i] / double(i+2);
      ell         = (i+1) * n + i;
      check[ell] -= w[i] / double(i+2);
      ell         = i * n + i+1;
      check[ell] -= w[i] / double(i+2);
   }

   // create f: x -> y
   CppAD::ADFun<double> f(a_x, a_y);

   // determine the sparsity pattern p for Hessian of w^T f
   typedef CppAD::vector< std::set<size_t> > SetVector;
   SetVector p_r(n);
   for(j = 0; j < n; j++)
      p_r[j].insert(j);
   f.ForSparseJac(n, p_r);
   //
   SetVector p_s(1);
   for(i = 0; i < m; i++)
      if( w[i] != 0 )
         p_s[0].insert(i);
   SetVector p_h = f.RevSparseHes(n, p_s);

   // requires the upper triangle of the Hessian
   size_t K = 2 * n - 1;
   CPPAD_TESTVECTOR(size_t) r(K), c(K);
   CPPAD_TESTVECTOR(double) hes(K);
   k = 0;
   for(i = 0; i < n; i++)
   {  r[k] = i;
      c[k] = i;
      k++;
      if( i < n-1 )
      {  r[k] = i;
         c[k] = i+1;
         k++;
      }
   }
   ok &= k == K;

   // test computing sparse Hessian
   CppAD::sparse_hessian_work work;
   size_t n_sweep = f.SparseHessian(x, w, p_h, r, c, hes, work);
   ok &= n_sweep == 3;
   for(k = 0; k < K; k++)
   {  ell = r[k] * n + c[k];
      ok &=  NearEqual(check[ell], hes[k], eps10, eps10);
      ell = c[k] * n + r[k];
      ok &=  NearEqual(check[ell], hes[k], eps10, eps10);
   }

   return ok;
}


template <class BaseVector, class BoolVector>
bool bool_case()
{  bool ok = true;
   using CppAD::AD;
   using CppAD::NearEqual;
   size_t i, j, k;
   double eps99 = 99.0 * std::numeric_limits<double>::epsilon();

   // domain space vector
   size_t n = 3;
   CPPAD_TESTVECTOR(AD<double>)  X(n);
   for(i = 0; i < n; i++)
      X[i] = AD<double> (0);

   // declare independent variables and starting recording
   CppAD::Independent(X);

   size_t m = 1;
   CPPAD_TESTVECTOR(AD<double>)  Y(m);
   Y[0] = X[0] * X[0] + X[0] * X[1] + X[1] * X[1] + X[2] * X[2];

   // create f: X -> Y and stop tape recording
   CppAD::ADFun<double> f(X, Y);

   // new value for the independent variable vector
   BaseVector x(n);
   for(i = 0; i < n; i++)
      x[i] = double(i);

   // second derivative of y[1]
   BaseVector w(m);
   w[0] = 1.;
   BaseVector h( n * n );
   h = f.SparseHessian(x, w);
   /*
       [ 2 1 0 ]
   h = [ 1 2 0 ]
       [ 0 0 2 ]
   */
   BaseVector check(n * n);
   check[0] = 2.; check[1] = 1.; check[2] = 0.;
   check[3] = 1.; check[4] = 2.; check[5] = 0.;
   check[6] = 0.; check[7] = 0.; check[8] = 2.;
   for(k = 0; k < n * n; k++)
      ok &=  NearEqual(check[k], h[k], eps99, eps99 );

   // determine the sparsity pattern p for Hessian of w^T F
   BoolVector r(n * n);
   for(j = 0; j < n; j++)
   {  for(k = 0; k < n; k++)
      r[j * n + k] = false;
      r[j * n + j] = true;
   }
   f.ForSparseJac(n, r);
   //
   BoolVector s(m);
   for(i = 0; i < m; i++)
      s[i] = w[i] != 0;
   BoolVector p = f.RevSparseHes(n, s);

   // test passing sparsity pattern
   h = f.SparseHessian(x, w, p);
   for(k = 0; k < n * n; k++)
      ok &=  NearEqual(check[k], h[k], eps99, eps99 );

   return ok;
}
template <class BaseVector, class SetVector>
bool set_case()
{  bool ok = true;
   using CppAD::AD;
   using CppAD::NearEqual;
   size_t i, j, k;
   double eps99 = 99.0 * std::numeric_limits<double>::epsilon();

   // domain space vector
   size_t n = 3;
   CPPAD_TESTVECTOR(AD<double>)  X(n);
   for(i = 0; i < n; i++)
      X[i] = AD<double> (0);

   // declare independent variables and starting recording
   CppAD::Independent(X);

   size_t m = 1;
   CPPAD_TESTVECTOR(AD<double>)  Y(m);
   Y[0] = X[0] * X[0] + X[0] * X[1] + X[1] * X[1] + X[2] * X[2];

   // create f: X -> Y and stop tape recording
   CppAD::ADFun<double> f(X, Y);

   // new value for the independent variable vector
   BaseVector x(n);
   for(i = 0; i < n; i++)
      x[i] = double(i);

   // second derivative of y[1]
   BaseVector w(m);
   w[0] = 1.;
   BaseVector h( n * n );
   h = f.SparseHessian(x, w);
   /*
       [ 2 1 0 ]
   h = [ 1 2 0 ]
       [ 0 0 2 ]
   */
   BaseVector check(n * n);
   check[0] = 2.; check[1] = 1.; check[2] = 0.;
   check[3] = 1.; check[4] = 2.; check[5] = 0.;
   check[6] = 0.; check[7] = 0.; check[8] = 2.;
   for(k = 0; k < n * n; k++)
      ok &=  NearEqual(check[k], h[k], eps99, eps99 );

   // determine the sparsity pattern p for Hessian of w^T F
   SetVector r(n);
   for(j = 0; j < n; j++)
      r[j].insert(j);
   f.ForSparseJac(n, r);
   //
   SetVector s(1);
   for(i = 0; i < m; i++)
      if( w[i] != 0 )
         s[0].insert(i);
   SetVector p = f.RevSparseHes(n, s);

   // test passing sparsity pattern
   h = f.SparseHessian(x, w, p);
   for(k = 0; k < n * n; k++)
      ok &=  NearEqual(check[k], h[k], eps99, eps99 );

   return ok;
}
} // End empty namespace
# include <vector>
# include <valarray>
bool sparse_hessian(void)
{  bool ok = true;

   ok &= rc_tridiagonal();
   // ---------------------------------------------------------------
   // vector of bool cases
   ok &= bool_case< CppAD::vector  <double>, CppAD::vectorBool   >();
   ok &= bool_case< std::vector    <double>, CppAD::vector<bool> >();
   ok &= bool_case< std::valarray  <double>, std::vector<bool>   >();
   // ---------------------------------------------------------------
   // vector of set cases
   typedef std::vector< std::set<size_t> >   std_vector_set;
   typedef CppAD::vector< std::set<size_t> > cppad_vector_set;
   //
   ok &= set_case< CppAD::vector<double>, std_vector_set   >();
   ok &= set_case< std::valarray<double>, std_vector_set   >();
   ok &= set_case< std::vector<double>,   cppad_vector_set >();
   ok &= set_case< CppAD::vector<double>, cppad_vector_set >();
   //
   // According to section 26.3.2.3 of the 1998 C++ standard
   // a const valarray does not return references to its elements.
   // so do not include it in the testing for sets.
   // ---------------------------------------------------------------
   return ok;
}