1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-24 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
Old SparseHessian example
*/
# include <cppad/cppad.hpp>
namespace { // ---------------------------------------------------------
bool rc_tridiagonal(void)
{ bool ok = true;
using CppAD::AD;
using CppAD::NearEqual;
size_t i, j, k, ell;
double eps10 = 10. * CppAD::epsilon<double>();
size_t n = 12; // must be greater than or equal 3; see n_sweep.
size_t m = n - 1;
CPPAD_TESTVECTOR(AD<double>) a_x(n), a_y(m);
CPPAD_TESTVECTOR(double) x(n), check(n * n), w(m);
for(j = 0; j < n; j++)
a_x[j] = x[j] = double(j+1);
// declare independent variables and start taping
CppAD::Independent(a_x);
for(ell = 0; ell < n * n; ell++)
check[ell] = 0.0;
for(i = 0; i < m; i++)
{ AD<double> diff = a_x[i+1] - a_x[i];
a_y[i] = 0.5 * diff * diff / double(i+2);
w[i] = double(i+1);
ell = i * n + i;
check[ell] += w[i] / double(i+2);
ell = (i+1) * n + i+1;
check[ell] += w[i] / double(i+2);
ell = (i+1) * n + i;
check[ell] -= w[i] / double(i+2);
ell = i * n + i+1;
check[ell] -= w[i] / double(i+2);
}
// create f: x -> y
CppAD::ADFun<double> f(a_x, a_y);
// determine the sparsity pattern p for Hessian of w^T f
typedef CppAD::vector< std::set<size_t> > SetVector;
SetVector p_r(n);
for(j = 0; j < n; j++)
p_r[j].insert(j);
f.ForSparseJac(n, p_r);
//
SetVector p_s(1);
for(i = 0; i < m; i++)
if( w[i] != 0 )
p_s[0].insert(i);
SetVector p_h = f.RevSparseHes(n, p_s);
// requires the upper triangle of the Hessian
size_t K = 2 * n - 1;
CPPAD_TESTVECTOR(size_t) r(K), c(K);
CPPAD_TESTVECTOR(double) hes(K);
k = 0;
for(i = 0; i < n; i++)
{ r[k] = i;
c[k] = i;
k++;
if( i < n-1 )
{ r[k] = i;
c[k] = i+1;
k++;
}
}
ok &= k == K;
// test computing sparse Hessian
CppAD::sparse_hessian_work work;
size_t n_sweep = f.SparseHessian(x, w, p_h, r, c, hes, work);
ok &= n_sweep == 3;
for(k = 0; k < K; k++)
{ ell = r[k] * n + c[k];
ok &= NearEqual(check[ell], hes[k], eps10, eps10);
ell = c[k] * n + r[k];
ok &= NearEqual(check[ell], hes[k], eps10, eps10);
}
return ok;
}
template <class BaseVector, class BoolVector>
bool bool_case()
{ bool ok = true;
using CppAD::AD;
using CppAD::NearEqual;
size_t i, j, k;
double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
// domain space vector
size_t n = 3;
CPPAD_TESTVECTOR(AD<double>) X(n);
for(i = 0; i < n; i++)
X[i] = AD<double> (0);
// declare independent variables and starting recording
CppAD::Independent(X);
size_t m = 1;
CPPAD_TESTVECTOR(AD<double>) Y(m);
Y[0] = X[0] * X[0] + X[0] * X[1] + X[1] * X[1] + X[2] * X[2];
// create f: X -> Y and stop tape recording
CppAD::ADFun<double> f(X, Y);
// new value for the independent variable vector
BaseVector x(n);
for(i = 0; i < n; i++)
x[i] = double(i);
// second derivative of y[1]
BaseVector w(m);
w[0] = 1.;
BaseVector h( n * n );
h = f.SparseHessian(x, w);
/*
[ 2 1 0 ]
h = [ 1 2 0 ]
[ 0 0 2 ]
*/
BaseVector check(n * n);
check[0] = 2.; check[1] = 1.; check[2] = 0.;
check[3] = 1.; check[4] = 2.; check[5] = 0.;
check[6] = 0.; check[7] = 0.; check[8] = 2.;
for(k = 0; k < n * n; k++)
ok &= NearEqual(check[k], h[k], eps99, eps99 );
// determine the sparsity pattern p for Hessian of w^T F
BoolVector r(n * n);
for(j = 0; j < n; j++)
{ for(k = 0; k < n; k++)
r[j * n + k] = false;
r[j * n + j] = true;
}
f.ForSparseJac(n, r);
//
BoolVector s(m);
for(i = 0; i < m; i++)
s[i] = w[i] != 0;
BoolVector p = f.RevSparseHes(n, s);
// test passing sparsity pattern
h = f.SparseHessian(x, w, p);
for(k = 0; k < n * n; k++)
ok &= NearEqual(check[k], h[k], eps99, eps99 );
return ok;
}
template <class BaseVector, class SetVector>
bool set_case()
{ bool ok = true;
using CppAD::AD;
using CppAD::NearEqual;
size_t i, j, k;
double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
// domain space vector
size_t n = 3;
CPPAD_TESTVECTOR(AD<double>) X(n);
for(i = 0; i < n; i++)
X[i] = AD<double> (0);
// declare independent variables and starting recording
CppAD::Independent(X);
size_t m = 1;
CPPAD_TESTVECTOR(AD<double>) Y(m);
Y[0] = X[0] * X[0] + X[0] * X[1] + X[1] * X[1] + X[2] * X[2];
// create f: X -> Y and stop tape recording
CppAD::ADFun<double> f(X, Y);
// new value for the independent variable vector
BaseVector x(n);
for(i = 0; i < n; i++)
x[i] = double(i);
// second derivative of y[1]
BaseVector w(m);
w[0] = 1.;
BaseVector h( n * n );
h = f.SparseHessian(x, w);
/*
[ 2 1 0 ]
h = [ 1 2 0 ]
[ 0 0 2 ]
*/
BaseVector check(n * n);
check[0] = 2.; check[1] = 1.; check[2] = 0.;
check[3] = 1.; check[4] = 2.; check[5] = 0.;
check[6] = 0.; check[7] = 0.; check[8] = 2.;
for(k = 0; k < n * n; k++)
ok &= NearEqual(check[k], h[k], eps99, eps99 );
// determine the sparsity pattern p for Hessian of w^T F
SetVector r(n);
for(j = 0; j < n; j++)
r[j].insert(j);
f.ForSparseJac(n, r);
//
SetVector s(1);
for(i = 0; i < m; i++)
if( w[i] != 0 )
s[0].insert(i);
SetVector p = f.RevSparseHes(n, s);
// test passing sparsity pattern
h = f.SparseHessian(x, w, p);
for(k = 0; k < n * n; k++)
ok &= NearEqual(check[k], h[k], eps99, eps99 );
return ok;
}
} // End empty namespace
# include <vector>
# include <valarray>
bool sparse_hessian(void)
{ bool ok = true;
ok &= rc_tridiagonal();
// ---------------------------------------------------------------
// vector of bool cases
ok &= bool_case< CppAD::vector <double>, CppAD::vectorBool >();
ok &= bool_case< std::vector <double>, CppAD::vector<bool> >();
ok &= bool_case< std::valarray <double>, std::vector<bool> >();
// ---------------------------------------------------------------
// vector of set cases
typedef std::vector< std::set<size_t> > std_vector_set;
typedef CppAD::vector< std::set<size_t> > cppad_vector_set;
//
ok &= set_case< CppAD::vector<double>, std_vector_set >();
ok &= set_case< std::valarray<double>, std_vector_set >();
ok &= set_case< std::vector<double>, cppad_vector_set >();
ok &= set_case< CppAD::vector<double>, cppad_vector_set >();
//
// According to section 26.3.2.3 of the 1998 C++ standard
// a const valarray does not return references to its elements.
// so do not include it in the testing for sets.
// ---------------------------------------------------------------
return ok;
}
|