1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
@begin sparse_sub_hes.cpp$$
$spell
$$
$section Sparse Hessian on Subset of Variables: Example and Test$$
$head Purpose$$
This example uses a
$cref/column subset/sparse_hessian/p/Column Subset/$$ of the sparsity pattern
to compute the Hessian for a subset of the variables.
The values in the rest of the sparsity pattern do not matter.
$head See Also$$
$cref sub_sparse_hes.cpp$$
$end
*/
// BEGIN C++
# include <cppad/cppad.hpp>
namespace { // BEGIN_EMPTY_NAMESPACE
// --------------------------------------------------------------------------
void record_function(CppAD::ADFun<double>& f, size_t n)
{ // must be greater than or equal 3; see n_sweep below
assert( n >= 3 );
//
using CppAD::AD;
typedef CppAD::vector< AD<double> > a_vector;
//
// domain space vector
a_vector a_x(n);
for(size_t j = 0; j < n; j++)
a_x[j] = AD<double> (0);
// declare independent variables and starting recording
CppAD::Independent(a_x);
// range space vector
size_t m = 1;
a_vector a_y(m);
a_y[0] = 0.0;
for(size_t j = 1; j < n; j++)
a_y[0] += a_x[j-1] * a_x[j] * a_x[j];
// create f: x -> y and stop tape recording
// (without executing zero order forward calculation)
f.Dependent(a_x, a_y);
//
return;
}
// --------------------------------------------------------------------------
bool test_set(const char* color_method)
{ bool ok = true;
//
typedef CppAD::vector< double > d_vector;
typedef CppAD::vector<size_t> i_vector;
typedef CppAD::vector< std::set<size_t> > s_vector;
//
size_t n = 12;
CppAD::ADFun<double> f;
record_function(f, n);
//
// sparsity patteren for the sub-set of variables we are computing
// the hessian w.r.t.
size_t n_sub = 4;
s_vector r(n);
for(size_t j = 0; j < n_sub; j++)
{ assert( r[j].empty() );
r[j].insert(j);
}
// store forward sparsity for J(x) = F^{(1)} (x) * R
f.ForSparseJac(n_sub, r);
// compute sparsity pattern for H(x) = (S * F)^{(2)} ( x ) * R
s_vector s(1);
assert( s[0].empty() );
s[0].insert(0);
bool transpose = true;
s_vector h = f.RevSparseHes(n_sub, s, transpose);
// set the row and column indices that correspond to lower triangle
i_vector row, col;
for(size_t i = 0; i < n_sub; i++)
{ if( i > 0 )
{ // diagonal element
row.push_back(i);
col.push_back(i);
// lower diagonal element
row.push_back(i);
col.push_back(i-1);
}
}
// weighting for the Hessian
d_vector w(1);
w[0] = 1.0;
// compute Hessian
CppAD::sparse_hessian_work work;
work.color_method = color_method;
d_vector x(n), hes( row.size() );
for(size_t j = 0; j < n; j++)
x[j] = double(j+1);
f.SparseHessian(x, w, h, row, col, hes, work);
// check the values in the sparse hessian
for(size_t ell = 0; ell < row.size(); ell++)
{ size_t i = row[ell];
size_t j = col[ell];
if( i == j )
ok &= hes[ell] == 2.0 * x[i-1];
else
{ ok &= j+1 == i;
ok &= hes[ell] == 2.0 * x[i];
}
}
return ok;
}
// --------------------------------------------------------------------------
bool test_bool(const char* color_method)
{ bool ok = true;
//
typedef CppAD::vector< double > d_vector;
typedef CppAD::vector<size_t> i_vector;
typedef CppAD::vector<bool> s_vector;
//
size_t n = 12;
CppAD::ADFun<double> f;
record_function(f, n);
//
// sparsity patteren for the sub-set of variables we are computing
// the hessian w.r.t.
size_t n_sub = 4;
s_vector r(n * n_sub);
for(size_t i = 0; i < n; i++)
{ for(size_t j = 0; j < n_sub; j++)
r[ i * n_sub + j ] = (i == j);
}
// store forward sparsity for J(x) = F^{(1)} (x) * R
f.ForSparseJac(n_sub, r);
// compute sparsity pattern for H(x) = (S * F)^{(2)} ( x ) * R
s_vector s(1);
s[0] = true;
bool transpose = true;
s_vector h = f.RevSparseHes(n_sub, s, transpose);
// set the row and column indices that correspond to lower triangle
i_vector row, col;
for(size_t i = 0; i < n_sub; i++)
{ if( i > 0 )
{ // diagonal element
row.push_back(i);
col.push_back(i);
// lower diagonal element
row.push_back(i);
col.push_back(i-1);
}
}
// weighting for the Hessian
d_vector w(1);
w[0] = 1.0;
// extend sparsity pattern (values in extended columns do not matter)
s_vector h_extended(n * n);
for(size_t i = 0; i < n; i++)
{ for(size_t j = 0; j < n_sub; j++)
h_extended[ i * n + j ] = h[ i * n_sub + j ];
for(size_t j = n_sub; j < n; j++)
h_extended[ i * n + j ] = false;
}
// compute Hessian
CppAD::sparse_hessian_work work;
work.color_method = color_method;
d_vector x(n), hes( row.size() );
for(size_t j = 0; j < n; j++)
x[j] = double(j+1);
f.SparseHessian(x, w, h_extended, row, col, hes, work);
// check the values in the sparse hessian
for(size_t ell = 0; ell < row.size(); ell++)
{ size_t i = row[ell];
size_t j = col[ell];
if( i == j )
ok &= hes[ell] == 2.0 * x[i-1];
else
{ ok &= j+1 == i;
ok &= hes[ell] == 2.0 * x[i];
}
}
return ok;
}
} // END_EMPTY_NAMESPACE
bool sparse_sub_hes(void)
{ bool ok = true;
ok &= test_set("cppad.symmetric");
ok &= test_set("cppad.general");
//
ok &= test_bool("cppad.symmetric");
ok &= test_bool("cppad.general");
return ok;
}
// END C++
|