1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-24 Bradley M. Bell
// ----------------------------------------------------------------------------
# include <cppad/cppad.hpp>
bool sparse_vec_ad(void)
{ bool ok = true;
using namespace CppAD;
// dimension of the domain space
size_t n = 3;
size_t i, j;
// independent variable vector
CPPAD_TESTVECTOR(AD<double>) X(n);
for(j = 0; j < n; j++)
X[j] = AD<double>(j);
Independent(X);
// dependent variable vector
size_t m = n;
CPPAD_TESTVECTOR(AD<double>) Y(m);
// check results vector
CPPAD_TESTVECTOR( bool ) Check(m * n);
// Create a VecAD so that there are two in the tape and the sparsity
// pattern depends on the second one (checks addressing VecAD objects)
VecAD<double> W(n);
// VecAD equal to X
VecAD<double> Z(n);
AD<double> J;
for(j = 0; j < n; j++)
{ J = AD<double>(j);
W[J] = X[0];
Z[J] = X[j];
// y[i] depends on x[j] for j <= i
// (and is non-linear for j <= 1).
if( j == 1 )
Y[j] = Z[J] * Z[J];
else
Y[j] = Z[J];
}
// compute dependent variables values
AD<double> P = 1;
J = AD<double>(0);
for(j = 0; j < n; j++)
{ for(i = 0; i < m; i++)
Check[ i * m + j ] = (j <= i);
}
// create function object F : X -> Y
ADFun<double> F(X, Y);
// dependency matrix for the identity function W(x) = x
CPPAD_TESTVECTOR( bool ) Identity(n * n);
for(i = 0; i < n; i++)
{ for(j = 0; j < n; j++)
Identity[ i * n + j ] = false;
Identity[ i * n + i ] = true;
}
// evaluate the dependency matrix for Identity(F(x))
CPPAD_TESTVECTOR( bool ) Px(m * n);
Px = F.RevSparseJac(n, Identity);
// check values
for(i = 0; i < m; i++)
{ for(j = 0; j < n; j++)
ok &= (Px[i * m + j] == Check[i * m + j]);
}
// evaluate the dependency matrix for F(Identity(x))
CPPAD_TESTVECTOR( bool ) Py(m * n);
Py = F.ForSparseJac(n, Identity);
// check values
for(i = 0; i < m; i++)
{ for(j = 0; j < n; j++)
ok &= (Py[i * m + j] == Check[i * m + j]);
}
// test sparsity pattern for Hessian of F_2 ( Identity(x) )
CPPAD_TESTVECTOR(bool) Hy(m);
for(i = 0; i < m; i++)
Hy[i] = false;
Hy[2] = true;
CPPAD_TESTVECTOR(bool) Pxx(n * n);
Pxx = F.RevSparseHes(n, Hy);
for(i = 0; i < n; i++)
{ for(j = 0; j < n; j++)
ok &= (Pxx[i * n + j] == false );
}
// test sparsity pattern for Hessian of F_1 ( Identity(x) )
for(i = 0; i < m; i++)
Hy[i] = false;
Hy[1] = true;
Pxx = F.RevSparseHes(n, Hy);
for(i = 0; i < n; i++)
{ for(j = 0; j < n; j++)
ok &= (Pxx[i * n + j] == ( (i <= 1) && (j <= 1) ) );
}
return ok;
}
|