File: sqrt.cpp

package info (click to toggle)
cppad 2026.00.00.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,584 kB
  • sloc: cpp: 112,960; sh: 6,146; ansic: 179; python: 71; sed: 12; makefile: 10
file content (198 lines) | stat: -rw-r--r-- 5,422 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------

/*
Two old sqrt examples now used just for validation testing.
*/
# include <cppad/cppad.hpp>
# include <cmath>

namespace { // BEGIN empty namespace

bool SqrtTestOne(void)
{  bool ok = true;
   using CppAD::sqrt;
   using CppAD::pow;
   using namespace CppAD;
   double eps99 = 99.0 * std::numeric_limits<double>::epsilon();

   // independent variable vector, indices, values, and declaration
   CPPAD_TESTVECTOR(AD<double>) U(1);
   size_t s = 0;
   U[s]     = 4.;
   Independent(U);

   // dependent variable vector, indices, and values
   CPPAD_TESTVECTOR(AD<double>) Z(2);
   size_t x = 0;
   size_t y = 1;
   Z[x]     = sqrt(U[s]);
   Z[y]     = sqrt(Z[x]);

   // define f : U -> Z and vectors for derivative calculations
   ADFun<double> f(U, Z);
   CPPAD_TESTVECTOR(double) v( f.Domain() );
   CPPAD_TESTVECTOR(double) w( f.Range() );

   // check values
   ok &= NearEqual(Z[x] , 2.,        eps99 , eps99);
   ok &= NearEqual(Z[y] , sqrt(2.),  eps99 , eps99);

   // forward computation of partials w.r.t. s
   v[s] = 1.;
   w    = f.Forward(1, v);
   ok &= NearEqual(w[x], .5  * pow(4., -.5),   eps99 , eps99); // dx/ds
   ok &= NearEqual(w[y], .25 * pow(4., -.75),  eps99 , eps99); // dy/ds

   // reverse computation of partials of y
   w[x] = 0.;
   w[y] = 1.;
   v    = f.Reverse(1,w);
   ok &= NearEqual(v[s], .25 * pow(4., -.75),  eps99 , eps99); // dy/ds

   // forward computation of second partials w.r.t s
   v[s] = 1.;
   w    = f.Forward(1, v);
   v[s] = 0.;
   w    = f.Forward(2, v);
   ok &= NearEqual(       // d^2 y / (ds ds)
      2. * w[y] ,
      -.75 * .25 * pow(4., -1.75),
      eps99 ,
      eps99
   );

   // reverse computation of second partials of y
   CPPAD_TESTVECTOR(double) r( f.Domain() * 2 );
   w[x] = 0.;
   w[y] = 1.;
   r    = f.Reverse(2, w);
   ok &= NearEqual(      // d^2 y / (ds ds)
      r[2 * s + 1] ,
      -.75 * .25 * pow(4., -1.75),
      eps99 ,
      eps99
   );

   return ok;

}
bool SqrtTestTwo(void)
{  bool ok = true;
   using namespace CppAD;
   double eps99 = 99.0 * std::numeric_limits<double>::epsilon();

   // independent variable vector
   CPPAD_TESTVECTOR(AD<double>) U(1);
   U[0]     = 2.;
   Independent(U);

   // a temporary values
   AD<double> x = U[0] * U[0];

   // dependent variable vector
   CPPAD_TESTVECTOR(AD<double>) Z(1);
   Z[0] =  sqrt( x ); // z = sqrt( u * u )

   // create f: U -> Z and vectors used for derivative calculations
   ADFun<double> f(U, Z);
   CPPAD_TESTVECTOR(double) v(1);
   CPPAD_TESTVECTOR(double) w(1);

   // check value
   ok &= NearEqual(U[0] , Z[0],  eps99 , eps99);

   // forward computation of partials w.r.t. u
   size_t j;
   size_t p     = 5;
   double jfac  = 1.;
   double value = 1.;
   v[0]         = 1.;
   for(j = 1; j < p; j++)
   {  jfac *= double(j);
      w     = f.Forward(j, v);
      ok &= NearEqual(w[0], value/jfac, eps99, eps99); // d^jz/du^j
      v[0]  = 0.;
      value = 0.;
   }

   // reverse computation of partials of Taylor coefficients
   CPPAD_TESTVECTOR(double) r(p);
   w[0]  = 1.;
   r     = f.Reverse(p, w);
   jfac  = 1.;
   value = 1.;
   for(j = 0; j < p; j++)
   {  ok &= NearEqual(r[j], value/jfac, eps99, eps99); // d^jz/du^j
      jfac *= double(j + 1);
      value = 0.;
   }

   return ok;
}
bool SqrtTestThree(void)
{  bool ok = true;
   using CppAD::sqrt;
   using CppAD::exp;
   using namespace CppAD;
   double eps99 = 99.0 * std::numeric_limits<double>::epsilon();

   // independent variable vector, indices, values, and declaration
   double x = 4.;
   CPPAD_TESTVECTOR(AD<double>) X(1);
   X[0]     = x;
   Independent(X);

   // dependent variable vector, indices, and values
   CPPAD_TESTVECTOR(AD<double>) Y(1);
   Y[0]     = sqrt( exp(X[0]) );

   // define f : X -> Y and vectors for derivative calculations
   ADFun<double> f(X, Y);

   // forward computation of first Taylor coefficient
   CPPAD_TESTVECTOR(double) x1( f.Domain() );
   CPPAD_TESTVECTOR(double) y1( f.Range() );
   x1[0] = 1.;
   y1    = f.Forward(1, x1);
   ok   &= NearEqual(y1[0], exp(x/2.)/2.,   eps99 , eps99);

   // forward computation of second Taylor coefficient
   CPPAD_TESTVECTOR(double) x2( f.Domain() );
   CPPAD_TESTVECTOR(double) y2( f.Range() );
   x2[0] = 0.;
   y2    = f.Forward(2, x2);
   ok   &= NearEqual(2.*y2[0] , exp(x/2.)/4., eps99 , eps99 );

   // forward computation of third Taylor coefficient
   CPPAD_TESTVECTOR(double) x3( f.Domain() );
   CPPAD_TESTVECTOR(double) y3( f.Range() );
   x3[0] = 0.;
   y3    = f.Forward(3, x3);
   ok   &= NearEqual(6.*y3[0] , exp(x/2.)/8., eps99 , eps99 );

   // reverse computation of deritavitve of Taylor coefficients
   CPPAD_TESTVECTOR(double) r( f.Domain() * 4 );
   CPPAD_TESTVECTOR(double) w(1);
   w[0] = 1.;
   r    = f.Reverse(4, w);
   ok   &= NearEqual(r[0], exp(x/2.)/2., eps99 , eps99);
   ok   &= NearEqual(r[1], exp(x/2.)/4., eps99 , eps99 );
   ok   &= NearEqual(2.*r[2], exp(x/2.)/8., eps99 , eps99 );
   ok   &= NearEqual(6.*r[3], exp(x/2.)/16., eps99 , eps99 );

   return ok;

}

} // END empty namespace

bool Sqrt(void)
{  bool ok = true;
   ok &= SqrtTestOne();
   ok &= SqrtTestTwo();
   ok &= SqrtTestThree();
   return ok;
}