1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
|
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------
/*
Two old SubEq examples now used just for valiadation testing
*/
# include <cppad/cppad.hpp>
namespace { // BEGIN empty namespace
bool SubEqTestOne(void)
{ bool ok = true;
using namespace CppAD;
// independent variable vector, indices, values, and declaration
CPPAD_TESTVECTOR(AD<double>) U(2);
size_t s = 0;
size_t t = 1;
U[s] = 3.;
U[t] = 2.;
Independent(U);
// dependent variable vector and indices
CPPAD_TESTVECTOR(AD<double>) Z(2);
size_t x = 0;
size_t y = 1;
// dependent variable values
Z[x] = U[s];
Z[y] = U[t];
Z[x] -= U[t]; // AD<double> -= AD<double>
Z[y] -= 5.; // AD<double> -= double
// create f: U -> Z and vectors used for derivative calculations
ADFun<double> f(U, Z);
CPPAD_TESTVECTOR(double) v( f.Domain() );
CPPAD_TESTVECTOR(double) w( f.Range() );
// check function values
ok &= ( Z[x] == 3. - 2. );
ok &= ( Z[y] == 2. - 5. );
// forward computation of partials w.r.t. t
v[s] = 0.;
v[t] = 1.;
w = f.Forward(1, v);
ok &= ( w[x] == -1. ); // dx/dt
ok &= ( w[y] == 1. ); // dy/dt
// reverse computation of second partials of x
CPPAD_TESTVECTOR(double) r( f.Domain() * 2 );
w[x] = 1.;
w[y] = 0.;
r = f.Reverse(2, w);
ok &= ( r[2 * s + 1] == 0. ); // d^2 x / (ds ds)
ok &= ( r[2 * t + 1] == 0. ); // d^2 x / (ds dt)
return ok;
}
bool SubEqTestTwo(void)
{ bool ok = true;
using namespace CppAD;
double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
// independent variable vector
double u0 = .5;
CPPAD_TESTVECTOR(AD<double>) U(1);
U[0] = u0;
Independent(U);
// dependent variable vector
CPPAD_TESTVECTOR(AD<double>) Z(1);
Z[0] = U[0]; // initial value
Z[0] -= 2; // AD<double> -= int
Z[0] -= 4.; // AD<double> -= double
Z[0] -= 2 * U[0]; // AD<double> -= AD<double>
// create f: U -> Z and vectors used for derivative calculations
ADFun<double> f(U, Z);
CPPAD_TESTVECTOR(double) v(1);
CPPAD_TESTVECTOR(double) w(1);
// check value
ok &= NearEqual(Z[0] , u0-2-4-2*u0, eps99 , eps99);
// forward computation of partials w.r.t. u
size_t j;
size_t p = 5;
double jfac = 1.;
double value = -1.;
v[0] = 1.;
for(j = 1; j < p; j++)
{ jfac *= double(j);
w = f.Forward(j, v);
ok &= NearEqual(w[0], value/jfac, eps99, eps99); // d^jz/du^j
v[0] = 0.;
value = 0.;
}
// reverse computation of partials of Taylor coefficients
CPPAD_TESTVECTOR(double) r(p);
w[0] = 1.;
r = f.Reverse(p, w);
jfac = 1.;
value = -1.;
for(j = 0; j < p; j++)
{ ok &= NearEqual(r[j], value/jfac, eps99, eps99); // d^jz/du^j
jfac *= double(j + 1);
value = 0.;
}
return ok;
}
} // END empty namespace
bool SubEq(void)
{ bool ok = true;
ok &= SubEqTestOne();
ok &= SubEqTestTwo();
return ok;
}
|