File: subgraph_1.cpp

package info (click to toggle)
cppad 2026.00.00.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,584 kB
  • sloc: cpp: 112,960; sh: 6,146; ansic: 179; python: 71; sed: 12; makefile: 10
file content (301 lines) | stat: -rw-r--r-- 9,625 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------

# include <cppad/cppad.hpp>

namespace {
   typedef CPPAD_TESTVECTOR(size_t)  svector;
   typedef CppAD::sparse_rc<svector> sparsity;
   //
   using CppAD::AD;
   typedef CPPAD_TESTVECTOR(AD<double>) avector;

   // ========================================================================
   // algorithm that will be checkpointed
   void g_algo(const avector& u, avector& v)
   {  for(size_t j = 0; j < size_t( u.size() ); ++j)
         v[0] += u[j];
   }

   // will be a pointer to atomic version of g_algo
   CppAD::checkpoint<double>* atom_g = nullptr;
   // ------------------------------------------------------------------------
   // record function
   void record_function(
      bool                  optimize ,
      size_t&               n        ,
      size_t&               m        ,
      CppAD::ADFun<double>& fun      )
   {
      // declare checkpoint function
      avector au(3), av(1);
      for(size_t j = 0; j < 3; j++)
         au[j] = AD<double>(j);
      if( atom_g == nullptr )
         atom_g = new CppAD::checkpoint<double>("atom_g", g_algo, au, av);
      //
      // domain space vector
      n = 6;
      CPPAD_TESTVECTOR(AD<double>) ax(n);
      for(size_t j = 0; j < n; j++)
         ax[j] = AD<double>(j);

      // declare independent variables and start recording
      CppAD::Independent(ax);

      // range space vector
      m = 8;
      CPPAD_TESTVECTOR(AD<double>) ay(m);
      ay[0] = 0.0;                     // does not depend on anything
      ay[1] = ax[1];                   // is equal to an independent variable
      AD<double> sum = ax[1] + ax[1];  // only uses ax[1]
      ay[2] = sum * ax[2];             // operator(variable, variable)
      ay[3] = sin(ax[1]);              // operator(variable)
      ay[4] = ax[4] / 2.0;             // operator(variable, parameter)
      ay[5] = 2.0 / ax[3];             // operator(parameter, variable)
      //
      // a atomic function call
      for(size_t j = 0; j < size_t(au.size()); ++j)
         au[j] = ax[j + 3];
      (*atom_g)(au, av);
      ay[6] = av[0];
      //
      // variable + variable operatros that optimizer will change to
      // cumulative summation
      ay[7] = 0.0;
      for(size_t j = 0; j < n; ++j)
         ay[7] += ax[j];
      //
      // create f: x -> y and stop tape recording
      fun.Dependent(ax, ay);
      //
      if( optimize )
         fun.optimize();
      return;
   }
   // ------------------------------------------------------------------------
   bool compare_subgraph_sparsity(
      CppAD::sparse_rc<svector> subgraph  ,
      CppAD::sparse_rc<svector> check     )
   {  bool ok = true;

      // check nnz
      size_t sub_nnz = subgraph.nnz();
      size_t chk_nnz = check.nnz();
      ok            &= sub_nnz == chk_nnz;
      size_t nnz     = std::min(sub_nnz, chk_nnz);

      // row major order
      svector sub_order = subgraph.row_major();
      svector chk_order = check.row_major();

      // check row indices
      const svector& sub_row( subgraph.row() );
      const svector& chk_row( check.row() );
      for(size_t k = 0; k < nnz; k++)
         ok &= sub_row[ sub_order[k] ] == chk_row[ chk_order[k] ];

      // check column indices
      const svector& sub_col( subgraph.col() );
      const svector& chk_col( check.col() );
      for(size_t k = 0; k < nnz; k++)
         ok &= sub_col[ sub_order[k] ] == chk_col[ chk_order[k] ];

      /*
      std::cout << "\nsub_row = " << sub_row << "\n";
      std::cout << "chk_row = " << chk_row << "\n";
      std::cout << "sub_col = " << sub_col << "\n";
      std::cout << "chk_col = " << chk_col << "\n";
      */

      return ok;

   }
   // ------------------------------------------------------------------------
   bool test_subgraph_sparsity(bool optimize)
   {  bool ok = true;

      // create f: x -> y
      size_t n, m;
      CppAD::ADFun<double> f;
      record_function(optimize, n, m, f);

      // --------------------------------------------------------------------
      // Entire sparsity pattern

      // compute sparsity using subgraph_sparsity
      CPPAD_TESTVECTOR(bool) select_domain(n), select_range(m);
      for(size_t j = 0; j < n; j++)
         select_domain[j] = true;
      for(size_t i = 0; i < m; i++)
         select_range[i] = true;
      bool transpose       = false;
      sparsity subgraph_out;
      f.subgraph_sparsity(
         select_domain, select_range, transpose, subgraph_out
      );

      // compute sparsity using for_jac_sparsity
      sparsity pattern_in(n, n, n);
      for(size_t k = 0; k < n; k++)
         pattern_in.set(k, k, k);
      bool dependency     = true;
      bool internal_bool  = true;
      sparsity check_out;
      f.for_jac_sparsity(
         pattern_in, transpose, dependency, internal_bool, check_out
      );

      // compare results
      ok &= compare_subgraph_sparsity(subgraph_out, check_out);

      // --------------------------------------------------------------------
      // Exclude ax[1]
      select_domain[1] = false;
      f.subgraph_sparsity(
         select_domain, select_range, transpose, subgraph_out
      );

      pattern_in.resize(n, n, n-1);
      for(size_t k = 0; k < n-1; k++)
      {  if( k < 1 )
            pattern_in.set(k, k, k);
         else
            pattern_in.set(k, k+1, k+1);
      }
      f.for_jac_sparsity(
         pattern_in, transpose, dependency, internal_bool, check_out
      );

      // compare results
      ok &= compare_subgraph_sparsity(subgraph_out, check_out);

      return ok;
   }
   // ------------------------------------------------------------------------
   bool compare_subgraph_reverse(
      const CPPAD_TESTVECTOR(size_t)&  col   ,
      const CPPAD_TESTVECTOR(double)&  dw    ,
      const CPPAD_TESTVECTOR(double)&  check )
   {  bool ok = true;
      double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
      //
      size_t n = size_t( check.size() );
      //
      // check order in col
      for(size_t c = 1; c < size_t( col.size() ); c++)
         ok &= col[c] > col[c-1];
      //
      size_t c = 0;
      for(size_t j = 1; j < n; j++)
      {  while( c < size_t( col.size() ) && col[c] < j )
            ++c;
         if( c < size_t( col.size() ) && col[c] == j )
            ok &= CppAD::NearEqual(dw[j], check[j], eps99, eps99);
         else
            ok &= CppAD::NearEqual(0.0, check[j], eps99, eps99);
      }
      return ok;
   }
   // ------------------------------------------------------------------------
   bool test_subgraph_reverse(bool optimize)
   {  bool ok = true;

      // create f: x -> y
      size_t n, m;
      CppAD::ADFun<double> f;
      record_function(optimize, n, m, f);

      // value of x at which to compute derivatives
      CPPAD_TESTVECTOR(double) x(n);
      for(size_t j = 0; j < n; ++j)
         x[j] = double(n) / double(j + 1);
      f.Forward(0, x);

      // exclude x[4] from the derivative calculations
      CPPAD_TESTVECTOR(bool) select_domain(n);
      for(size_t j = 0; j < n; j++)
         select_domain[j] = true;
      select_domain[4] = false;
      f.subgraph_reverse(select_domain);

      // vector used to check results
      CPPAD_TESTVECTOR(double) check(n);
      for(size_t j = 0; j < n; j++)
         check[j] = 0.0;

      // derivative of y[0]
      CPPAD_TESTVECTOR(size_t) col;
      CPPAD_TESTVECTOR(double) dw;
      size_t q   = 1;
      size_t ell = 0;
      f.subgraph_reverse(q, ell, col, dw);
      ok &= compare_subgraph_reverse(col, dw, check);
      //
      // derivative of y[1]
      check[1] = 1.0;
      ell = 1;
      f.subgraph_reverse(q, ell, col, dw);
      ok &= compare_subgraph_reverse(col, dw, check);
      //
      // derivative of y[2]
      check[1] = 2.0 * x[2];
      check[2] = 2.0 * x[1];
      ell = 2;
      f.subgraph_reverse(q, ell, col, dw);
      ok &= compare_subgraph_reverse(col, dw, check);
      //
      // derivative of y[3]
      check[1] = cos( x[1] );
      check[2] = 0.0;
      ell = 3;
      f.subgraph_reverse(q, ell, col, dw);
      ok &= compare_subgraph_reverse(col, dw, check);
      //
      // derivative of y[4] (x[4] is not selected)
      check[1] = 0.0;
      ell = 4;
      f.subgraph_reverse(q, ell, col, dw);
      ok &= compare_subgraph_reverse(col, dw, check);
      //
      // derivative of y[5]
      check[3] = -2.0 / (x[3] * x[3]);
      ell = 5;
      f.subgraph_reverse(q, ell, col, dw);
      ok &= compare_subgraph_reverse(col, dw, check);
      //
      // derivative of y[6]  (x[4] is not selected)
      check[3] = 1.0;
      check[5] = 1.0;
      ell = 6;
      f.subgraph_reverse(q, ell, col, dw);
      ok &= compare_subgraph_reverse(col, dw, check);
      //
      // derivative of y[7] (x[4] is not selected)
      for(size_t j = 0; j < n;  ++j)
         check[j] = 1.0;
      check[4] = 0.0;
      ell = 7;
      f.subgraph_reverse(q, ell, col, dw);
      ok &= compare_subgraph_reverse(col, dw, check);
      //
      return ok;
   }

}
bool subgraph_1(void)
{  bool ok       = true;
   bool optimize = false;
   ok           &= test_subgraph_sparsity(optimize);
   ok           &= test_subgraph_reverse(optimize);
   optimize      = true;
   ok           &= test_subgraph_sparsity(optimize);
   ok           &= test_subgraph_reverse(optimize);
   //
   ok           &= atom_g != nullptr;
   delete atom_g;
   //
   return ok;
}