File: tan.cpp

package info (click to toggle)
cppad 2026.00.00.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,584 kB
  • sloc: cpp: 112,960; sh: 6,146; ansic: 179; python: 71; sed: 12; makefile: 10
file content (172 lines) | stat: -rw-r--r-- 4,899 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
// SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
// SPDX-FileCopyrightText: Bradley M. Bell <bradbell@seanet.com>
// SPDX-FileContributor: 2003-22 Bradley M. Bell
// ----------------------------------------------------------------------------


/*
Test higher order derivatives for tan(x) function.
*/

# include <cppad/cppad.hpp>

namespace {
   bool tan_two(void)
   {  bool ok = true;
      using CppAD::AD;
      using CppAD::NearEqual;
      double eps = 10. * std::numeric_limits<double>::epsilon();

      // domain space vector
      size_t n = 1;
      CPPAD_TESTVECTOR(AD<double>) ax(n);
      ax[0] = 0.5;

      // declare independent variables and starting recording
      CppAD::Independent(ax);

      // range space vector
      size_t m = 1;
      CPPAD_TESTVECTOR(AD<double>) ay(m);
      ay[0] = tan( ax[0] );

      // create f: x -> y and stop tape recording
      CppAD::ADFun<double> f(ax, ay);

      // first order Taylor coefficient
      CPPAD_TESTVECTOR(double) x1(n), y1;
      x1[0] = 2.0;
      y1    = f.Forward(1, x1);
      ok   &= size_t( y1.size() ) == m;

      // secondorder Taylor coefficients
      CPPAD_TESTVECTOR(double) x2(n), y2;
      x2[0] = 0.0;
      y2    = f.Forward(2, x2);
      ok   &= size_t( y2.size() ) == m;
      //
      // Y  (t)    = F[X_0(t)]
      //           =  tan(0.5 + 2t )
      // Y' (t)    =  2 * cos(0.5 + 2t )^(-2)
      double sec_sq  = 1.0 / ( cos(0.5) * cos(0.5) );
      double check   = 2.0 * sec_sq;
      ok  &= NearEqual(y1[0] , check, eps, eps);
      //
      // Y''(0)    = 8*cos(0.5)^(-3)*sin(0.5)
      check = 8.0 * tan(0.5) * sec_sq / 2.0;
      ok    &= NearEqual(y2[0] , check, eps, eps);
      //
      return ok;
   }
   bool tan_case(bool tan_first)
   {  bool ok = true;
      double eps = 100. * std::numeric_limits<double>::epsilon();
      using CppAD::AD;
      using CppAD::NearEqual;

      // independent variable vector, indices, values, and declaration
      size_t n = 1;
      CPPAD_TESTVECTOR(AD<double>) ax(n);
      ax[0]     = .7;
      Independent(ax);

      // dependent variable vector and indices
      size_t m = 1;
      CPPAD_TESTVECTOR(AD<double>) ay(m);
      if( tan_first )
         ay[0] = atan( tan( ax[0] ) );
      else
         ay[0] = tan( atan( ax[0] ) );

      // check value
      ok &= NearEqual(ax[0] , ay[0],  eps, eps);

      // create f: x -> y and vectors used for derivative calculations
      CppAD::ADFun<double> f(ax, ay);
      CPPAD_TESTVECTOR(double) dx(n), dy(m);

      // forward computation of partials w.r.t. x
      dx[0] = 1.;
      dy    = f.Forward(1, dx);
      ok   &= NearEqual(dy[0], 1e0, eps, eps);
      size_t p, order = 5;
      dx[0] = 0.;
      for(p = 2; p < order; p++)
      {  dy    = f.Forward(p, dx);
         ok   &= NearEqual(dy[0], 0e0, eps, eps);
      }

      // reverse computation of order partial
      CPPAD_TESTVECTOR(double)  w(m), dw(n * order);
      w[0] = 1.;
      dw   = f.Reverse(order, w);
      ok   &= NearEqual(dw[0], 1e0, eps, eps);
      for(p = 1; p < order; p++)
         ok   &= NearEqual(dw[p], 0e0, eps, eps);

      return ok;
   }
   bool tanh_case(bool tanh_first)
   {  bool ok = true;
      double eps = 100. * std::numeric_limits<double>::epsilon();
      using CppAD::AD;
      using CppAD::NearEqual;

      // independent variable vector, indices, values, and declaration
      size_t n = 1;
      CPPAD_TESTVECTOR(AD<double>) ax(n);
      ax[0]     = .5;
      Independent(ax);

      // dependent variable vector and indices
      size_t m = 1;
      CPPAD_TESTVECTOR(AD<double>) ay(m);
      AD<double> z;
      if( tanh_first )
      {  z     = tanh( ax[0] );
         ay[0] = .5 * log( (1. + z) / (1. - z) );
      }
      else
      {  z     = .5 * log( (1. + ax[0]) / (1. - ax[0]) );
         ay[0] = tanh(z);
      }
      // check value
      ok &= NearEqual(ax[0] , ay[0],  eps, eps);

      // create f: x -> y and vectors used for derivative calculations
      CppAD::ADFun<double> f(ax, ay);
      CPPAD_TESTVECTOR(double) dx(n), dy(m);

      // forward computation of partials w.r.t. x
      dx[0] = 1.;
      dy    = f.Forward(1, dx);
      ok   &= NearEqual(dy[0], 1e0, eps, eps);
      size_t p, order = 5;
      dx[0] = 0.;
      for(p = 2; p < order; p++)
      {  dy    = f.Forward(p, dx);
         ok   &= NearEqual(dy[0], 0e0, eps, eps);
      }

      // reverse computation of order partial
      CPPAD_TESTVECTOR(double)  w(m), dw(n * order);
      w[0] = 1.;
      dw   = f.Reverse(order, w);
      ok   &= NearEqual(dw[0], 1e0, eps, eps);
      for(p = 1; p < order; p++)
         ok   &= NearEqual(dw[p], 0e0, eps, eps);

      return ok;
   }
}
bool tan(void)
{  bool ok = true;
   //
   ok     &= tan_case(true);
   ok     &= tan_case(false);
   ok     &= tanh_case(true);
   ok     &= tanh_case(false);
   //
   ok     &= tan_two();
   return ok;
}