1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
|
#ifndef GI_CALLBACK_HPP
#define GI_CALLBACK_HPP
#include "base.hpp"
#include "exception.hpp"
#include "wrap.hpp"
GI_MODULE_EXPORT
namespace gi
{
namespace detail
{
#if GI_CONFIG_EXCEPTIONS
inline ::GError **
find_gerror(bool &has_gerror)
{
has_gerror = false;
return nullptr;
}
inline ::GError **
find_gerror(bool &has_gerror, ::GError **error)
{
has_gerror = true;
return error;
}
template<typename CT, typename... CType>
inline ::GError **
find_gerror(bool &has_gerror, CT /*arg*/, CType... args)
{
return find_gerror(has_gerror, args...);
}
inline ::GError *
exception_error(const repository::GLib::Error &exc)
{
return g_error_copy(exc.gobj_());
}
inline ::GError *
exception_error(const repository::GLib::Error_Ref &exc)
{
return g_error_copy(exc.gobj_());
}
template<typename E>
inline ::GError *
exception_error(const E &exc)
{
static auto quark = g_quark_from_static_string("gi-error-quark");
return g_error_new(quark, 0, "%s", exception_desc(exc).c_str());
}
template<bool SILENT = FALSE, typename E, typename... CType>
void
report_exception(const E &exc, CType... args)
{
// see if we can really report error somewhere
bool has_gerror = false;
GError **error = find_gerror(has_gerror, args...);
if (has_gerror) {
g_return_if_fail(error == NULL || *error == NULL);
if (error)
*error = exception_error(exc);
// if caller does not need/want error, exception disappears here
} else {
// simply report the hard and simple way
// otherwise catch internally if something else/more is desired
if (!SILENT) {
auto msg = std::string("handler exception; ") + exception_desc(exc);
g_critical("%s", msg.c_str());
}
}
}
#endif
// (re)float only applies to GObject
template<typename CppType, typename Transfer,
typename std::enable_if<!traits::is_object<CppType>::value>::type * =
nullptr>
auto
unwrap_maybe_float(CppType &&v, const Transfer &t)
{
return unwrap(std::forward<CppType>(v), t);
}
// (re) float only for transfer none/floating
template<typename CppType,
typename std::enable_if<traits::is_object<CppType>::value>::type * =
nullptr>
inline typename traits::ctype<CppType>::type
unwrap_maybe_float(CppType &&v, const transfer_full_t &t)
{
return unwrap(std::forward<CppType>(v), t);
}
template<typename CppType,
typename std::enable_if<traits::is_object<CppType>::value>::type * =
nullptr>
inline typename traits::ctype<CppType>::type
unwrap_maybe_float(CppType &&v, const transfer_none_t &)
{
// expected called with r-value
static_assert(!std::is_reference<CppType>::value, "");
// steal/take from wrapper
auto result = (typename traits::ctype<CppType>::type)v.release_();
// the following is essentially a bit of a hack as mentioned in
// https://bugzilla.gnome.org/show_bug.cgi?id=693393)
// that is, we are about to return an object to C (from binding/callback)
// and this should be done with none transfer
// this none may actually mean floating (e.g. a factory-like callback)
// but no way to know from annotations
// so if at runtime the wrapper actually holds the only reference,
// then it is about to be destroyed (when wrapper goes away)
// *before* the object can make it back to caller
// so turn that ref into a floating one (as only that makes sense)
// if it is not the only ref, it is kept alive elsewhere
// (as typically so for a "getter" callback)
// so it is really treated as none
auto obj = (GObject *)result;
// theoretically not MT safe, but if == 1, only 1 thread should be involved
if (obj->ref_count == 1) {
g_object_force_floating(obj);
} else {
// otherwise unref as wrapper would have
g_object_unref(obj);
}
return result;
}
template<typename T>
constexpr T
unconst(T t)
{
return t;
}
inline char *
unconst(const char *t)
{
return (char *)t;
}
// helper types to provide additional argument info beyond Transfer
template<std::size_t... index>
struct args_index
{
static constexpr auto value = std::make_tuple(index...);
using value_type = decltype(value);
};
template<typename Transfer, bool _inout, typename CustomTraits = void,
typename ArgsIndex = args_index<>>
struct arg_info
{
using transfer_type = Transfer;
static constexpr bool inout = _inout;
// tuple of index; used to selects the C arguments (to assemble C++ argument)
using args_type = ArgsIndex;
// additional info as used by corresponding cb_arg_handler
using custom_type = CustomTraits;
};
// access above info by forwarding types
template<typename T, typename Enable = void>
struct arg_traits
{
using transfer_type = typename T::transfer_type;
static constexpr bool inout = T::inout;
using args_type = typename T::args_type;
using custom_type = typename T::custom_type;
};
// legacy case; only transfer type
template<typename T>
struct arg_traits<T,
typename std::enable_if<std::is_base_of<transfer_t, T>::value>::type>
{
using transfer_type = T;
static constexpr bool inout = false;
using args_type = args_index<>;
using custom_type = void;
};
// IndexTuple is essentially an args_index<...>
template<typename IndexTuple, std::size_t... Index, typename F,
typename ArgTuple>
decltype(auto)
apply_with_args(std::index_sequence<Index...>, F &&f, ArgTuple &&args)
{
return f(std::get<std::get<Index>(IndexTuple::value)>(args)...);
}
template<typename IndexTuple, typename F, typename... Args>
decltype(auto)
apply_with_args(F &&f, Args &&...args)
{
return apply_with_args<IndexTuple>(
std::make_index_sequence<
std::tuple_size<typename IndexTuple::value_type>::value>(),
std::forward<F>(f), std::forward_as_tuple(args...));
}
// a simple callback has no (need for) args_index
template<typename T>
struct is_simple_cb : public std::true_type
{};
template<typename Transfer, typename... Transfers>
struct is_simple_cb<std::tuple<Transfer, Transfers...>>
{
static constexpr bool value =
std::tuple_size<
typename arg_traits<Transfer>::args_type::value_type>::value == 0 ||
(sizeof...(Transfers) > 0 &&
is_simple_cb<std::tuple<Transfers...>>::value);
};
template<typename T, typename CT = void>
struct map_cpp_function;
// handles all calls C -> C++ (callbacks, virtual method calls)
// restrictions though on types supported (enforced by code generation)
template<typename T, typename RetTransfer, typename ArgTransfers,
typename CT = typename map_cpp_function<T>::type,
bool SIMPLE = is_simple_cb<ArgTransfers>::value>
struct transform_caller;
// helper used below that provides pre-call and post-call steps
// to handle each argument's conversion to and from C++
// in so-called (most) simple cases, there is one-to-one mapping between
// C and C++ arguments and C++ argument type that allows to deduce context
// (in particular, no callbacks or sized array)
// as such, proper steps can be obtained by specialization on Cpp argument type
template<typename CppArg, typename Enable = void>
struct cb_arg_handler;
// in simple cases, C signature can be derived from C++ signature
template<typename T, typename CT>
struct map_cpp_function
{
using type = CT;
};
template<typename R, typename... Args>
struct map_cpp_function<R(Args...), void>
{
using type = typename traits::ctype<R>::type(
typename cb_arg_handler<Args>::c_type...);
};
// signature used in virtual method handling
template<typename R, typename... Args>
struct map_cpp_function<R (*)(Args...), void>
{
using type = typename traits::ctype<R>::type(
typename cb_arg_handler<Args>::c_type...);
};
// NOTE function type R(const A) is identical to R(A)
// so no deduced Args below will retain const (if such)
// in simple cases, *Transfer* is simply a transfer type
// but it may also be a more elaborate argument trait
template<typename R, typename... Args, typename RetTransfer,
typename... Transfers, typename CR, typename... CArgs, bool SIMPLE>
struct transform_caller<R(Args...), RetTransfer, std::tuple<Transfers...>,
CR(CArgs...), SIMPLE>
{
static_assert(sizeof...(Args) == sizeof...(Transfers), "");
static_assert(!SIMPLE || sizeof...(Args) == sizeof...(CArgs), "");
typedef transform_caller self_type;
typedef R (*caller_type)(Args &&..., void *d);
private:
static R do_call(Args &&...args, caller_type func, void *d)
{
return func(std::forward<Args>(args)..., d);
}
// helper that provides context for pack expansion below
static void dummy_call(...){};
template<typename T>
static auto _tt(const T &)
{
return typename arg_traits<T>::transfer_type();
}
// non-void return
template<typename T, std::size_t... Index,
typename std::enable_if<SIMPLE && !std::is_void<T>::value>::type * =
nullptr>
static CR _wrapper(
CArgs... args, caller_type func, void *d, std::index_sequence<Index...>)
{
std::tuple<cb_arg_handler<Args>...> handlers;
auto ret = do_call(
std::get<Index>(handlers).arg(args, _tt(Transfers()), Transfers())...,
func, d);
dummy_call((std::get<Index>(handlers).post(args, _tt(Transfers())), 0)...);
return unconst(unwrap_maybe_float(std::move(ret), RetTransfer()));
}
// void return
template<typename T, std::size_t... Index,
typename std::enable_if<SIMPLE && std::is_void<T>::value>::type * =
nullptr>
static CR _wrapper(
CArgs... args, caller_type func, void *d, std::index_sequence<Index...>)
{
std::tuple<cb_arg_handler<Args>...> handlers;
do_call(
std::get<Index>(handlers).arg(args, _tt(Transfers()), Transfers())...,
func, d);
dummy_call((std::get<Index>(handlers).post(args, _tt(Transfers())), 0)...);
}
// complex; non-void return
template<typename T, std::size_t... Index,
typename std::enable_if<!SIMPLE && !std::is_void<T>::value>::type * =
nullptr>
static CR _wrapper(
CArgs... args, caller_type func, void *d, std::index_sequence<Index...>)
{
std::tuple<cb_arg_handler<Args>...> handlers;
auto ret = do_call(
apply_with_args<typename arg_traits<Transfers>::args_type>(
[&handlers](auto... selargs) mutable -> decltype(auto) {
return std::get<Index>(handlers).arg(selargs...,
typename arg_traits<Transfers>::transfer_type(), Transfers());
},
args...)...,
func, d);
dummy_call((apply_with_args<typename arg_traits<Transfers>::args_type>(
[&handlers](auto... selargs) mutable -> decltype(auto) {
return std::get<Index>(handlers).post(selargs...,
typename arg_traits<Transfers>::transfer_type());
},
args...),
0)...);
return unconst(unwrap_maybe_float(std::move(ret), RetTransfer()));
}
// complex; void return
template<typename T, std::size_t... Index,
typename std::enable_if<!SIMPLE && std::is_void<T>::value>::type * =
nullptr>
static CR _wrapper(
CArgs... args, caller_type func, void *d, std::index_sequence<Index...>)
{
std::tuple<cb_arg_handler<Args>...> handlers;
do_call(apply_with_args<typename arg_traits<Transfers>::args_type>(
[&handlers](auto... selargs) mutable -> decltype(auto) {
return std::get<Index>(handlers).arg(selargs...,
typename arg_traits<Transfers>::transfer_type(),
Transfers());
},
args...)...,
func, d);
dummy_call((apply_with_args<typename arg_traits<Transfers>::args_type>(
[&handlers](auto... selargs) mutable -> decltype(auto) {
return std::get<Index>(handlers).post(selargs...,
typename arg_traits<Transfers>::transfer_type());
},
args...),
0)...);
}
public:
static CR wrapper(CArgs... args, caller_type func, void *d)
{
// exceptions should not escape into plain C
#if GI_CONFIG_EXCEPTIONS
try {
#endif
return self_type::template _wrapper<R>(
args..., func, d, std::make_index_sequence<sizeof...(Args)>());
#if GI_CONFIG_EXCEPTIONS
} catch (const repository::GLib::Error &exc) {
report_exception(exc, args...);
} catch (const repository::GLib::Error_Ref &exc) {
report_exception(exc, args...);
} catch (const std::exception &exc) {
report_exception(exc, args...);
} catch (...) {
report_exception(nullptr, args...);
}
return typename traits::ctype<R>::type();
#endif
}
};
// minor helper traits used below
namespace _traits
{
template<typename T>
struct remove_all_pointers
{
using type = T;
};
template<typename T>
struct remove_all_pointers<T *>
{
using type = typename remove_all_pointers<T>::type;
};
template<typename T>
struct remove_all_pointers<T *const>
{
using type = typename remove_all_pointers<T>::type;
};
template<typename T>
using is_basic_or_void = typename std::conditional<traits::is_basic<T>::value ||
std::is_void<T>::value,
std::true_type, std::false_type>::type;
template<typename T>
using is_basic_argument = typename std::conditional<
is_basic_or_void<typename std::remove_cv<
typename remove_all_pointers<T>::type>::type>::value,
std::true_type, std::false_type>::type;
template<typename T>
using is_const_lvalue = typename std::conditional<
std::is_lvalue_reference<T>::value &&
std::is_const<typename std::remove_reference<T>::type>::value,
std::true_type, std::false_type>::type;
} // namespace _traits
// generic fallback case; assume input parameter
// (also covers boxed callerallocates, which pretty much is/becomes input)
template<typename CppArg, typename Enable>
struct cb_arg_handler
{
using c_type = typename traits::ctype<CppArg>::type;
// use generic CType to handle const differences wrt c_type
template<typename CType, typename Transfer, typename ArgTrait>
typename std::decay<CppArg>::type arg(
CType arg, const Transfer &t, const ArgTrait &) noexcept
{
// wrap to normalized destination target (no const &)
// the destination type here is really only relevant for collection cases
// (since that depends on the contained element)
// otherwise all the info is pretty much in c_type type
return wrap_to<typename std::decay<CppArg>::type>(arg, t);
}
// minor variation; dynamic sized array input
// also accepts length input
template<typename CType, typename Transfer, typename ArgTrait>
typename std::decay<CppArg>::type arg(
CType arg, int length, const Transfer &t, const ArgTrait &) noexcept
{
// destination also really needed here
return wrap_to<typename std::decay<CppArg>::type>(arg, length, t);
}
void post(...){};
};
// passthrough on (pointers to) basic values;
// handles input/output of basic values, as well as arrays of such
template<typename CppArg>
struct cb_arg_handler<CppArg,
typename std::enable_if<_traits::is_basic_argument<CppArg>::value>::type>
{
using c_type = CppArg;
template<typename CType, typename Transfer, typename ArgTrait>
CType arg(CType arg, const Transfer &, const ArgTrait &) noexcept
{
return arg;
}
void post(...){};
// array size case; inout C int* to in Cpp int
// (only enable if so tagged by non-default custom trait type)
template<typename CType, typename Transfer, typename ArgTrait>
typename std::enable_if<
!std::is_void<typename arg_traits<ArgTrait>::custom_type>::value,
CType>::type
arg(CType *arg, const Transfer &, const ArgTrait &) noexcept
{
return *arg;
}
};
// handle "complex" (in)out argument
// (though also handles e.g. int& case, which might be optimized, but anyways)
// these are recognized/assumed to be a pointer or reference to non-basic type
template<typename CppArg>
struct cb_arg_handler<CppArg,
typename std::enable_if<
!_traits::is_basic_argument<CppArg>::value &&
(std::is_pointer<CppArg>::value ||
(std::is_lvalue_reference<CppArg>::value &&
!_traits::is_const_lvalue<CppArg>::value))>::type>
{
using BaseCppType =
typename std::decay<typename std::remove_pointer<CppArg>::type>::type;
// no more pointer expected here
// (other than for void* cases, which do not introspect well, but anyways)
static_assert(!std::is_pointer<BaseCppType>::value ||
std::is_same<BaseCppType, gpointer>::value ||
std::is_same<BaseCppType, gconstpointer>::value,
"");
using c_type = typename traits::ctype<BaseCppType>::type *;
// intermediate helper storage
BaseCppType var_{};
// pointer case
CppArg rv(std::true_type) { return &var_; }
// ref case
CppArg rv(std::false_type) { return var_; }
// handle const variations (e.g. const char**)
template<typename T, typename X>
static void assign(T *&t, X val)
{
t = const_cast<T *>(val);
}
template<typename T, typename X>
static void assign(T &t, X val)
{
t = unconst(val);
}
template<typename Transfer, typename ArgTrait>
CppArg arg(c_type arg, const Transfer &t, const ArgTrait &)
{
bool inout = arg_traits<ArgTrait>::inout;
// a plain type has no special needs
// so we can always take any bogus value as-is
// (which is then less sensitive to incorrect annotation)
if (arg && (inout || traits::is_plain<BaseCppType>::value))
var_ = wrap_to<BaseCppType>(*arg, t);
return rv(std::is_pointer<CppArg>());
}
// overall function call happens following arg call above
// post invoked after function call
template<typename Transfer>
void post(c_type arg, const Transfer &t)
{
if (arg)
assign(*arg, unwrap_maybe_float(std::move(var_), t));
}
// sized array variants; arguments (data, size)
// latter could be input (int) or (in)out (int*)
template<typename Transfer, typename Int, typename ArgTrait>
CppArg arg(c_type arg, Int size, const Transfer &t, const ArgTrait &)
{
bool inout = arg_traits<ArgTrait>::inout;
if (arg && inout)
var_ = wrap_to<BaseCppType>(*arg, size, t);
return rv(std::is_pointer<CppArg>());
}
template<typename Transfer, typename Int, typename ArgTrait>
CppArg arg(c_type arg, Int *size, const Transfer &t, const ArgTrait &)
{
bool inout = arg_traits<ArgTrait>::inout;
if (arg && size && inout)
var_ = wrap_to<BaseCppType>(*arg, *size, t);
return rv(std::is_pointer<CppArg>());
}
template<typename Transfer, typename Int>
void post(c_type arg, Int, const Transfer &t)
{
post(arg, nullptr, t);
}
template<typename Transfer, typename Int>
void post(c_type arg, Int *size, const Transfer &t)
{
if (arg)
assign(*arg, unwrap_maybe_float(std::move(var_), t));
if (size)
*size = var_.size();
}
};
// handles callback argument
// (as argument in anther callback, most likely a virtual method)
template<typename CppArg>
struct cb_arg_handler<CppArg,
typename std::enable_if<
std::is_pointer<typename CppArg::cfunction_type>::value>::type>
{
template<typename CType, typename Transfer, typename ArgTrait>
CppArg arg(CType cb, gpointer userdata, ::GDestroyNotify destroy,
const Transfer &, const ArgTrait &) noexcept
{
using ct = typename arg_traits<ArgTrait>::custom_type;
// setup shared pointer to userdata with destroy as Deleter
auto sp = destroy ? std::shared_ptr<void>(userdata, destroy) : nullptr;
// keep userdata/destroy alive as long as lambda handler
auto h = [cb, userdata, sp = std::move(sp)](
auto &&...args) -> decltype(auto) {
// original callback type CType should match deduced handler_cb_tpe
// but let's make sure as usual
return ct::handler(std::forward<decltype(args)>(args)...,
typename ct::handler_cb_type(cb), userdata);
};
return h;
}
template<typename CType, typename Transfer, typename ArgTrait>
CppArg arg(CType cb, gpointer userdata, const Transfer &t,
const ArgTrait &tt) noexcept
{
return arg(cb, userdata, nullptr, t, tt);
}
void post(...){};
};
class connection_status
{
public:
struct data
{
bool connected{false};
};
bool connected() const
{
auto sp = data_.lock();
return sp && sp->connected;
}
protected:
std::weak_ptr<data> data_;
};
// callback handling
template<typename G>
class connectable;
template<typename G, bool AUTODESTROY = false>
class callback_wrapper;
template<typename R, typename... Args>
class connectable<R(Args...)>
{
friend class callback_wrapper<R(Args...)>;
struct data : public connection_status::data
{
template<typename T,
typename Enable = typename detail::disable_if_same_or_derived<data, T>>
data(T &&t) : callable(std::forward<T>(t))
{}
std::function<R(Args... args)> callable;
};
struct connection_status_factory : public connection_status
{
connection_status_factory(std::shared_ptr<data> p)
{
data_ = std::weak_ptr<connection_status::data>(p);
}
};
public:
// avoid copy constructor mishaps
template<typename T,
typename Enable =
typename detail::disable_if_same_or_derived<connectable, T>>
connectable(T &&t) : data_(std::make_shared<data>(std::forward<T>(t)))
{}
connection_status connection() const
{
return connection_status_factory(data_);
}
R operator()(Args... args) const
{
return data_->callable(std::forward<Args>(args)...);
}
explicit operator bool() const { return data_ && data_->callable; }
private:
// state management by wrapper
void connected(bool conn) { data_->connected = conn; }
void disconnect() { data_->connected = false; }
private:
std::shared_ptr<data> data_;
};
template<typename R, typename... Args, bool AUTODESTROY>
class callback_wrapper<R(Args...), AUTODESTROY>
{
typedef callback_wrapper self_type;
public:
template<typename T,
typename Enable =
typename detail::disable_if_same_or_derived<callback_wrapper, T>>
callback_wrapper(T &&t) : _callback(std::forward<T>(t))
{
// mark connected now that it is wrapped
_callback.connected(true);
}
// (only) used by manual callback workaround
static R wrapper(Args... args, gpointer user_data)
{
auto t = reinterpret_cast<callback_wrapper *>(user_data);
std::unique_ptr<self_type> wt(AUTODESTROY ? t : nullptr);
return t->_callback(args...);
}
static void destroy(gpointer user_data)
{
auto t = reinterpret_cast<callback_wrapper *>(user_data);
delete t;
}
// (async scope) wrapper may have to take ownership of additional data
// (other callback wrapper)
template<typename T>
void take_data(std::shared_ptr<T> d)
{
auto cb = std::move(_callback.data_->callable);
auto newcb = [d, cb](Args &&...args) {
return cb(std::forward<Args>(args)...);
};
_callback.data_->callable = std::move(newcb);
}
template<typename T>
void take_data(T *d)
{
take_data(std::shared_ptr<T>(d));
}
~callback_wrapper()
{
// other shared ptr to data might be around (unlikely though)
// but regardless disconnect now as requested (as wrapper is going away)
_callback.disconnect();
}
connectable<R(Args... args)> _callback;
};
template<typename G, typename CG = typename map_cpp_function<G>::type>
struct transform_callback_wrapper;
template<typename R, typename... Args, typename CR, typename... CArgs>
struct transform_callback_wrapper<R(Args...), CR(CArgs...)>
{
// transfers of arguments
template<bool AUTODESTROY, typename RetTransfer, typename... Transfers>
class with_transfer : public callback_wrapper<R(Args...)>
{
typedef callback_wrapper<R(Args...)> super_type;
typedef with_transfer self_type;
public:
template<typename T>
explicit with_transfer(T &&t) : super_type(std::forward<T>(t))
{}
private:
static R caller(Args &&...args, void *d)
{
auto this_ = (self_type *)d;
return this_->_callback(std::forward<Args>(args)...);
}
public:
static CR wrapper(CArgs... args, gpointer user_data)
{
auto t = reinterpret_cast<self_type *>(user_data);
std::unique_ptr<self_type> wt(AUTODESTROY ? t : nullptr);
return transform_caller<R(Args...), RetTransfer, std::tuple<Transfers...>,
CR(CArgs...)>::wrapper(args..., caller, t);
}
};
};
// used early in declarations, so avoid using unknown types in CSigOrVoid
template<typename CppSig, typename RetTransfer,
typename ArgTransfers = std::tuple<>, typename CSigOrVoid = void>
class callback;
template<typename CppSig, typename RetTransfer, typename... Transfers,
typename CSigOrVoid>
class callback<CppSig, RetTransfer, std::tuple<Transfers...>, CSigOrVoid>
: public connectable<CppSig>
{
typedef connectable<CppSig> super_type;
public:
typedef CppSig function_type;
typedef typename map_cpp_function<CppSig, CSigOrVoid>::type CSig;
template<bool ASYNC = false>
using wrapper_type = typename transform_callback_wrapper<function_type,
CSig>::template with_transfer<ASYNC, RetTransfer, Transfers...>;
typedef typename std::add_pointer<decltype(wrapper_type<>::wrapper)>::type
cfunction_type;
using super_type::super_type;
};
// signal handling;
// transfer none for arguments
// transfer full for return
template<typename G>
struct transform_signal_wrapper;
template<typename T>
struct signal_arg_transfer
{
typedef transfer_none_t type;
};
template<typename R, typename... Args>
struct transform_signal_wrapper<R(Args...)>
: public transform_callback_wrapper<R(
Args...)>::template with_transfer<false, transfer_full_t,
typename detail::signal_arg_transfer<Args>::type...>
{
private:
typedef typename transform_callback_wrapper<R(
Args...)>::template with_transfer<false, transfer_full_t,
typename detail::signal_arg_transfer<Args>::type...>
super_;
public:
template<typename T>
transform_signal_wrapper(T &&t) : super_(std::forward<T>(t))
{}
};
// connection helpers
class connection_impl
{
public:
connection_impl(gulong id, connection_status s) : id_(id), status_(s) {}
bool connected() const { return status_.connected(); }
gulong id() const { return id_; }
protected:
gulong id_;
connection_status status_;
};
template<typename Connection>
class connection
{
typedef Connection impl;
public:
connection() = default;
template<typename... Args>
explicit connection(Args... arg)
: conn_(std::make_shared<impl>(std::forward<Args>(arg)...))
{
// this is to be expected at this time
if (!connected()) {
g_warning("creating non-connected connection");
}
}
// implicit copy/move
bool connected() const { return conn_ && conn_->connected(); }
void disconnect()
{
if (connected())
conn_->disconnect();
}
protected:
std::shared_ptr<impl> conn_;
};
template<typename ConnectionBase>
class scoped_connection : public ConnectionBase
{
typedef ConnectionBase connection;
public:
scoped_connection() : connection() {}
~scoped_connection() { this->disconnect(); }
void release() { this->conn_.reset(); }
// ensure default movable
scoped_connection(scoped_connection &&other) = default;
scoped_connection &operator=(scoped_connection &&other) = default;
// not copyable; to avoid inadvertent disconnect
scoped_connection(const scoped_connection &other) = delete;
scoped_connection &operator=(const scoped_connection &other) = delete;
// but convert/assign from base class
scoped_connection(const connection &other) : connection(other) {}
scoped_connection &operator=(const connection &other)
{
(*(connection *)(this)) = other;
return *this;
}
scoped_connection &operator=(const connection &&other)
{
(*(connection *)(this)) = std::move(other);
return *this;
}
};
} // namespace detail
// function bind helpers
template<typename R, typename T, typename Tp, typename... Args>
inline std::function<R(Args...)>
mem_fun(R (T::*pm)(Args...), Tp object)
{
return [object, pm](Args... args) {
return (object->*pm)(std::forward<Args>(args)...);
};
}
template<typename R, typename T, typename Tp, typename... Args>
inline std::function<R(Args...)>
mem_fun(R (T::*pm)(Args...) const, Tp object)
{
return [object, pm](Args... args) {
return (object->*pm)(std::forward<Args>(args)...);
};
}
// expose for use in fallback scenarios
using detail::callback_wrapper;
} // namespace gi
#endif // CALLBACK_HPP
|