File: wrap.hpp

package info (click to toggle)
cppgir 2.0%2Bgit20250629.2a7d9ce-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,220 kB
  • sloc: cpp: 16,451; ansic: 355; python: 86; makefile: 13; sh: 9
file content (369 lines) | stat: -rw-r--r-- 10,833 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
#ifndef GI_WRAP_HPP
#define GI_WRAP_HPP

#include "base.hpp"
#include "string.hpp"

GI_MODULE_EXPORT
namespace gi
{
// object/wrapper conversion
template<typename CType, typename TransferType,
    typename CppType = typename traits::cpptype<CType *>::type,
    typename Enable =
        typename std::enable_if<traits::is_wrapper<CppType>::value>::type>
inline typename std::remove_const<CppType>::type
wrap(CType *v, const TransferType &t)
{
  // should be called with a concrete transfer subtype
  static_assert(!std::is_same<TransferType, transfer_t>::value, "");
  // the class wrap only has to deal with non-const class type
  typedef typename std::remove_const<CppType>::type TNC;
  return CppType::template wrap<TNC>(v, t.value);
}

// special case; wrap an owned box with full transfer
template<typename CType,
    typename CppType = typename traits::cpptype<CType *>::type,
    typename Enable =
        typename std::enable_if<traits::is_boxed<CppType>::value>::type,
    typename TNC = typename std::remove_const<CppType>::type>
inline TNC
wrap(CType *v, const transfer_full_t &)
{
  return CppType::template wrap<TNC>(v);
}

// special case; wrap a unowned box (that is, transfer none) to the Ref type
template<typename CType,
    typename CppType = typename traits::cpptype<CType *>::type,
    typename Enable =
        typename std::enable_if<traits::is_boxed<CppType>::value>::type,
    typename RefType = typename traits::reftype<
        typename std::remove_const<CppType>::type>::type>
inline RefType
wrap(CType *v, const transfer_none_t &)
{
  // unowned and no copy in all cases
  return RefType::template wrap<RefType>(v);
}

template<typename T,
    typename std::remove_reference<T>::type::BaseObjectType * = nullptr>
inline typename traits::ctype<T>::type
unwrap(T &&v, const transfer_none_t &)
{
  using DT = typename std::decay<T>::type;
  // test convenience
#ifndef GI_TEST
  static constexpr bool ALLOW_ALL = false;
#else
  static constexpr bool ALLOW_ALL = true;
#endif
  static_assert(ALLOW_ALL || traits::is_wrapper<DT>::value ||
                    traits::is_reftype<DT>::value,
      "transfer none expects refcnt wrapper or reftype (not owning box)");
  return v.gobj_();
}

namespace detail
{
// lvalue
template<typename T,
    typename std::enable_if<!traits::is_boxed<T>::value>::type * = nullptr>
inline typename traits::ctype<T>::type
unwrap(const T &v, const transfer_full_t &, std::true_type)
{
  // no implicit copy for boxed; should end up in other case
  static_assert(!traits::is_boxed<T>::value, "boxed copy");
  return v.gobj_copy_();
}

// rvalue
template<typename T,
    typename std::enable_if<!traits::is_reftype<T>::value>::type * = nullptr>
inline typename traits::ctype<T>::type
unwrap(T &&v, const transfer_full_t &, std::false_type)
{
  // in case of wrapper/object;
  // release only provided on base case with void* return
  return (typename traits::ctype<T>::type)v.release_();
}

} // namespace detail

template<typename T, typename std::decay<T>::type::BaseObjectType * = nullptr>
inline typename traits::ctype<T>::type
unwrap(T &&v, const transfer_full_t &t)
{
  // universal reference dispatch
  return detail::unwrap(std::forward<T>(v), t, std::is_lvalue_reference<T>());
}

// container types
template<typename T, typename Transfer,
    typename std::decay<T>::type::_detail::DataType * = nullptr>
inline typename std::decay<T>::type::_detail::DataType
unwrap(T &&v, const Transfer &t)
{
  // universal reference dispatch
  return std::forward<T>(v)._unwrap(t);
}

// to wrap a container, the target wrapped type needs to be explicitly specified
// (in particular the contained element type)
// (target type should be decay'ed type)

// generic case, let wrap take care of it (usually no target type is needed)
template<typename TargetType, typename CType, typename Transfer,
    decltype(wrap(std::declval<typename std::decay<CType>::type>(),
        Transfer())) * = nullptr>
TargetType
wrap_to(CType v, const Transfer &t)
{
  static_assert(traits::is_decayed<TargetType>::value, "");
  return wrap(v, t);
}

// container case
template<typename TargetType, typename CType, typename Transfer,
    typename TargetType::_detail::DataType * = nullptr>
TargetType
wrap_to(CType v, const Transfer &t)
{
  static_assert(traits::is_decayed<TargetType>::value, "");
  return TargetType::template _wrap<TargetType>(v, t);
}

// container size case
template<typename TargetType, typename CType, typename Transfer,
    typename TargetType::_detail::DataType * = nullptr>
TargetType
wrap_to(CType v, int s, const Transfer &t)
{
  static_assert(traits::is_decayed<TargetType>::value, "");
  return TargetType::template _wrap<TargetType>(v, s, t);
}

#if 0
// string conversion
inline std::string
wrap(const char *v, const transfer_none_t &,
    const direction_t & = direction_dummy)
{
  return detail::make_string(v);
}

// actually should not accept const input (as it makes no sense for full
// transfer) but let's go the runtime way and not mind that too much (code
// generation will warn though)
inline std::string
wrap(const char *v, const transfer_full_t &,
    const direction_t & = direction_dummy)
{
  // a custom type that would allow direct mem transfer might be nice
  // but that might be too nifty and create yet-another-string-type
  std::string s;
  if (v) {
    s = v;
    g_free((char *)v);
  }
  return s;
}
#else
// string conversion
inline gi::cstring_v
wrap(const char *v, const transfer_none_t &)
{
  return cstring_v(v);
}

// actually should not accept const input (as it makes no sense for full
// transfer) but let's go the runtime way and not mind that too much (code
// generation will warn though)
inline gi::cstring
wrap(const char *v, const transfer_full_t &)
{
  // as said, never mind const
  return cstring{(char *)v, transfer_full};
}
#endif

// return const here, as somewhat customary, also
// wrapped function call is force-casted anyway (to const char* parameter)
// FIXME ?? though const is generally rare and it breaks consistency that way
inline const gchar *
unwrap(const std::string &v, const transfer_none_t &)
{
  return v.c_str();
}

inline const gchar *
unwrap(const detail::optional_string &v, const transfer_none_t &)
{
  return v.empty() ? nullptr : v.c_str();
}

template<typename Transfer>
inline const gchar *
unwrap(const detail::cstr<Transfer> &v, const transfer_none_t &)
{
  return v.c_str();
}

// R-value variants of the above, akin to transfer_none from an owning R-value
// bad dangling things would happen
inline const gchar *unwrap(std::string &&v, const transfer_none_t &) = delete;

inline const gchar *unwrap(
    detail::optional_string &&v, const transfer_none_t &) = delete;

template<typename Transfer>
inline const gchar *
unwrap(detail::cstr<Transfer> &&v, const transfer_none_t &)
{
  static_assert(std::is_same<Transfer, transfer_none_t>::value,
      "transfer none expects non-owning type");
  return v.c_str();
}

inline gchar *
unwrap(const std::string &v, const transfer_full_t &)
{
  return g_strdup(v.c_str());
}

inline gchar *
unwrap(const detail::optional_string &v, const transfer_full_t &)
{
  return v.empty() ? nullptr : g_strdup(v.c_str());
}

template<typename Transfer>
inline gchar *
unwrap(const gi::detail::cstr<Transfer> &v, const transfer_full_t &)
{
  return g_strdup(v.c_str());
}

inline gchar *
unwrap(gi::cstring &&v, const transfer_full_t &)
{
  return v.release_();
}

// enum conversion
template<typename T,
    typename std::enable_if<std::is_enum<T>::value>::type * = nullptr>
inline typename traits::cpptype<T>::type
wrap(T v, const transfer_t & = transfer_dummy)
{
  return (typename traits::cpptype<T>::type)v;
}

template<typename T,
    typename std::enable_if<std::is_enum<T>::value>::type * = nullptr>
inline typename traits::ctype<T>::type
unwrap(T v, const transfer_t & = transfer_dummy)
{
  return (typename traits::ctype<T>::type)v;
}

// plain basic pass along
template<typename T,
    typename std::enable_if<traits::is_basic<T>::value>::type * = nullptr>
inline T
wrap(T v, const transfer_t & = transfer_dummy)
{
  return v;
}

template<typename T,
    typename std::enable_if<traits::is_basic<T>::value>::type * = nullptr>
inline T
unwrap(T v, const transfer_t & = transfer_dummy)
{
  return v;
}

// callback conversion
// async or destroy-notify;
// signature forces copy, and std::move is used in unwrap call
template<typename T,
    typename std::remove_reference<T>::type::CallbackWrapperType * = nullptr>
inline typename std::remove_reference<T>::type::CallbackWrapperType
unwrap(T &&v, const transfer_t & = transfer_dummy)
{
  return typename std::remove_reference<T>::type::CallbackWrapperType(
      std::forward<T>(v));
}

// call or destroy-notify scope
template<typename T>
inline typename std::remove_reference<T>::type::template wrapper_type<false> *
unwrap(T &&v, const scope_t &)
{
  return new
      typename std::remove_reference<T>::type::template wrapper_type<false>(
          std::forward<T>(v));
}

// async scope
template<typename T>
inline typename std::remove_reference<T>::type::template wrapper_type<true> *
unwrap(T &&v, const scope_async_t &)
{
  return new
      typename std::remove_reference<T>::type::template wrapper_type<true>(
          std::forward<T>(v));
}

// dynamic GType casting within GObject/interface hierarchy
template<typename T, typename I,
    typename std::enable_if<
        traits::is_object<T>::value &&
        traits::is_object<typename std::decay<I>::type>::value>::type * =
        nullptr>
inline T
object_cast(I &&t)
{
  if (!t || !g_type_is_a(t.gobj_type_(), T::get_type_())) {
    return T();
  } else {
    return wrap((typename T::BaseObjectType *)t.gobj_copy_(), transfer_full);
  }
}

// this utility can be used to arrange for pointer-like const-ness
// that is, a const shared_ptr<T> is still usable like (non-const) T*
// in a way, any wrapper object T acts much like a smart-pointer,
// but as the (code generated) methods are non-const, they are not usable
// if the wrapper object is const (e.g. captured in a lambda)
// this helper object/class can be wrapped around the wrapper (phew)
// to absorb/shield the (outer) `const` (as it behaves as other smart pointers)
template<typename T>
class cs_ptr
{
  T t;

public:
  // rough check; T is expected to be a pointer wrapper
  static_assert(sizeof(T) == sizeof(void *), "");

  // if T not copy-able, argument may need to be move'd
  cs_ptr(T _t) : t(std::move(_t)) {}

  operator T() const & { return t; }
  operator T() && { return std::move(t); }

  T *get() const { return &t; }

  // C++ sacrilege,
  // but the const of pointer in T does not extend to pointee anyway
  T *operator*() const { return const_cast<T *>(&t); }
  T *operator->() const { return const_cast<T *>(&t); }
};

} // namespace gi

#endif // GI_WRAP_HPP